• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (01): 148-155.

• 论文 • 上一篇    下一篇

基于改进快速鲁棒性特征的导弹视频特征匹配

杨凯达1,赵文杰2,李成2,李德军2   

  1. (1.95808部队,甘肃 酒泉 735000;2.空军航空大学航空航天情报系,吉林 长春 130022)
  • 收稿日期:2014-12-09 修回日期:2015-05-04 出版日期:2016-01-25 发布日期:2016-01-25
  • 基金资助:

    国家自然科学基金(61301233);全军军事学研究生资助课题(2013JY512)

An improved algorithm based on speeded up robust features in
video image feature matching of TVcommandguided missile 

YANG Kaida1,ZHAO Wenjie2,LI Cheng2,LI Dejun2   

  1. (1.Troops 95808,Jiuquan 735000;
    2.Department of Aerospace Intelligence,Aviation University of Air Force,Changchun 130022,China)
  • Received:2014-12-09 Revised:2015-05-04 Online:2016-01-25 Published:2016-01-25

摘要:

利用电视制导导弹视频图像确定导弹落点,从而开展精确目标毁伤评估研究,是目前全新的一种评估手段。图像特征匹配是利用视频图像确定导弹落点的关键步骤。针对导弹视频图像的特点及其作战应用,在特征匹配阶段,依据准确性和实时性两个原则,对快速鲁棒性特征算法做了两方面的改进:一是限制特征点提取区域,定义了图像区域限制算子;二是限制特征点数量,利用算法阈值和随机抽样一致性算法对特征点进行限制。实验结果表明,提出的算法对典型视频片段进行处理,较原算法在匹配时间上平均减少12.6%,匹配准确率平均提升13.4%,较尺度不变特征变换算法匹配时间平均提升了74.9%,同时,有效消除伪匹配点。通过对三段视频进行测试仿真,改进算法在整体上较原算法的匹配时间加快14.9%,且通用性较强,适用于视频图像的特征点匹配。关键词:

关键词: 视频特征提取, 图像匹配, 快速鲁棒性特征, 电视制导导弹

Abstract:

Using TVcommandguided missile video images to determine the landing place of the missiles, which can be used to carry out accurate battle damage assessments, is a new kind of assessment tools. Image feature matching is the key step in determining the missile landing place according to video images. Considering the characteristics and the operational applications of missile video images, we improve the speeded up robust features algorithm in two aspects at the feature matching stage, which is based on the principles of accuracy and realtime performance. The first improvement is to restrict the extraction area of feature points and to define the restricted area factors. The second one is to limit the number of feature points via the algorithm threshold and random sample consensus algorithm. Experimental results show that when dealing with typical video clips, the improved algorithm can enhance the matching accuracy by 13.4%, and the matching time is reduced by 12.6% in comparison with the original speeded up robust features algorithm. Compared with the scale invariant feature transform algorithm, the matching time is enhanced by 74.9%. At the same time, the false matching points are eliminated effectively. Through the test simulation on three sections of videos, matching time of the improved algorithm is enhanced by 14.9% on the whole compared with the original algorithm, and it is generally suitable for feature points matching of video images.

Key words: video image feature extraction;image matching;speeded up robust features;TV-commandguided missile