• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于特征融合与决策树技术的表情识别方法

钟伟1,黄元亮2   

  1. (1.暨南大学理工学院,广东 广州 510632;2.暨南大学电气自动化研究所,广东 珠海 519070)
  • 收稿日期:2015-06-08 修回日期:2015-12-08 出版日期:2017-02-25 发布日期:2017-02-25
  • 基金资助:

    广东省科技计划项目(2013B010401019);珠海市公共平台项目(2013D0501990002)

A facial expression recognition algorithm based on
feature fusion and hierarchical decision tree technology
 

ZHONG Wei1,HUANG Yuan-liang2   

  1. (1.Institute of Technology,Jinan University,Guangzhou 510632;
    2.Institute of Electrical Automation,Jinan University,Zhuhai  519070,China)
     
  • Received:2015-06-08 Revised:2015-12-08 Online:2017-02-25 Published:2017-02-25

摘要:

针对复杂状况下传统表情识别方法存在的问题,提出一种新的非特定人表情识别方法。该算法首先提取每张表情图像的HOG特征和Haar小波特征,然后将两种不同的特征串行融合得到整幅图像的特征,最后通过SVM多分类器完成各层人脸表情的分类识别。在JAFFE人脸表情库上的仿真实验中,该方法的分类准确率达到87.9%,平均时耗达到10.296 6 s。对比实验结果表明,所提算法具有更高的识别率、更好的实时性和更强的鲁棒性。
 

关键词: 梯度方向直方图, Haar小波, 决策树, SVM

Abstract:

Aiming at the deficiency of the traditional expression recognition methods for complex situation, we propose a novel person-independent facial expression recognition method. We first calculate the histogram of orientation gradient for each facial expression image and extract Haar wavelet features from them. Then by connecting the two different characteristics obtained above, we get the whole image features. By using the multi-class SVM classifier in each layer we finally achieve facial expression classification and recognition. Simulations of facial expression recognition on the Japanese Female Facial Expression (JAFFE) database show that the classification accuracy reaches up to 87.9%, and the average time consumption rises to 10.2966s. The results of comparison experiments show that the new algorithm has higher recognition accuracy rate, less time consumption and stronger robustness.

Key words: histogram of oriented gradient, Haar wavelet, decision tree, SVM