计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 554-562.
贾俊杰,段超强
JIA Jun-jie,DUAN Chao-qiang
摘要: 检测托攻击的本质是对真实用户和虚假用户进行分类,现有的检测算法对于具有选择项的流行攻击、段攻击等攻击方式的检测鲁棒性较差。针对这一问题,通过分析真实用户和虚假用户的评分分布情况,结合ID3决策树提出基于用户评分离散度的托攻击检测Dispersion-C算法。算法通过用户评分极端评分比、去极端评分方差和用户评分标准差3个特征衡量用户评分离散度,并将其作为ID3决策树算法的分类特征,根据不同特征的信息增益选择特征作为分类属性,训练分类器。实验结果表明,Dispersion-C算法对各类托攻击均有良好的检测效果,具有较好的鲁棒性。