• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 554-562.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于评分离散度的托攻击检测算法

贾俊杰,段超强   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)

  • 收稿日期:2020-08-16 修回日期:2020-11-26 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:
    国家自然科学基金(61967013);甘肃省高等学校创新能力提升项目(2019A-006)

A shilling attack detection algorithm based on score dispersion

JIA Jun-jie,DUAN Chao-qiang   

  1. (School of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2020-08-16 Revised:2020-11-26 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 检测托攻击的本质是对真实用户和虚假用户进行分类,现有的检测算法对于具有选择项的流行攻击、段攻击等攻击方式的检测鲁棒性较差。针对这一问题,通过分析真实用户和虚假用户的评分分布情况,结合ID3决策树提出基于用户评分离散度的托攻击检测Dispersion-C算法。算法通过用户评分极端评分比、去极端评分方差和用户评分标准差3个特征衡量用户评分离散度,并将其作为ID3决策树算法的分类特征,根据不同特征的信息增益选择特征作为分类属性,训练分类器。实验结果表明,Dispersion-C算法对各类托攻击均有良好的检测效果,具有较好的鲁棒性。

关键词: 推荐系统, 托攻击检测, 评分离散度, 决策树

Abstract: The essence of detecting shilling attacks is to classify real users and fake users. The existing detection algorithms have poor detection robustness against bandwagon attacks and segment attacks with options. To solve this problem, by analyzing the different distributions of ratings of real users and fake users, combined with ID3 decision tree, a shilling attack detection algorithm based on user score dispersion is proposed. The algorithm measures the dispersion of user scores by using three features: extreme score ratio, de-extreme score variance, and user score standard deviation, and uses it as the classification feature of the ID3 decision tree algorithm.  According to the information gain of different features, the feature is selected as the classification attribute, and the classifier is trained. Experiments show that the algorithm has a good detection effect on all kinds of shilling attacks, and has good robustness.

Key words: recommendation system, shilling attack detection, score dispersion, decision tree