• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于细菌觅食优化算法的城市轨道交通调度优化

李锦1,王联国2   

  1. (1.甘肃农业大学工学院,甘肃 兰州 730070;2.甘肃农业大学信息科学技术学院,甘肃 兰州 730070)
  • 收稿日期:2015-10-12 修回日期:2015-12-21 出版日期:2017-03-25 发布日期:2017-03-25
  • 基金资助:

    甘肃省教育信息化发展战略研究项目(2011-02)

Optimization of urban rail transit
scheduling based on BFO algorithm

LI Jin1,WANG Lian-guo2   

  1. (1.College of Engineering,Gansu Agricultural University,Lanzhou  730070;
    2.College of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China)
  • Received:2015-10-12 Revised:2015-12-21 Online:2017-03-25 Published:2017-03-25

摘要:

为了合理高效地制定城市轨道交通调度方案,实现客流与车次的优化配置,提出了一种基于细菌觅食优化算法的城市轨道交通调度优化策略。兼顾乘客与运营企业双方利益,以发车间隔为决策变量,乘客平均候车时间最短和发车次数最少为优化目标,建立调度优化模型,并对细菌觅食优化算法求解该调度模型的过程进行分析。结合某城市轨道交通一号线实际运营数据进行仿真实验,并与其他算法的优化结果进行对比分析,实验表明该算法和模型能有效解决城市轨道交通调度优化问题。
 

关键词: 智能优化算法, 细菌觅食优化算法, 城市轨道交通调度, 调度优化模型, 发车间隔

Abstract:

In order to formulate  a reasonable and effective dispatching scheme of urban rail transit and realize the optimal allocation of passengers flow and vehicles times, we propose an optimal urban rail transit scheduling based on the bacteria foraging optimization (BFO) algorithm. Taking into consideration the benefits of both enterprises and passengers and with departure interval as the variable, we establish an optimal model of dispatching and analyze the process of calculation and the solution to the model using the bacteria foraging optimization algorithm. The optimal targets are the shortest waiting time of passengers  and a minimum quantity of dispatching vehicles. Stimulation experiments on the actual operation data of the No.1 rail transit in a city show that the BFO algorithm and the dispatching model can solve the problem of urban rail transit optimization effectively.
 

Key words: intelligent optimization algorithm, bacteria foraging optimization (BFO), urban rail transit scheduling, scheduling optimization model, departure interval