• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于一阶谓词公式去除商务数据冗余关联规则的研究

郭瑞,钱晓东   

  1. (兰州交通大学电子与信息工程学院,甘肃 兰州 730070)
  • 收稿日期:2015-09-28 修回日期:2015-12-22 出版日期:2017-03-25 发布日期:2017-03-25
  • 基金资助:

    国家自然科学基金(71461017)

Removal of redundant association rules of business
data based on first-order predicate formula

GUO Rui,QIAN Xiao-dong   

  1. (School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2015-09-28 Revised:2015-12-22 Online:2017-03-25 Published:2017-03-25

摘要:

由于现代网络数据量的急速增长,利用现有的算法生成关联规则时,冗余规则的数量远远大于实际有价值的规则,冗余规则不仅影响用户分析,而且使关联规则的利用率也大大降低。针对关联规则的冗余问题,提出了一种基于一阶谓词公式去除商务数据冗余关联规则的方法,利用一阶谓词公式来表示关联规则,通过等价公式进行转换,并利用算法和矩阵等价将谓词公式转换为邻接矩阵,然后利用冗余规则算法进行删除。实验原始数据为UCI数据集,并利用Weka生成关联规则。最后利用Matlab和Java实现冗余规则的去除。

关键词: 关联规则, 一阶谓词公式, 关联矩阵, 邻接矩阵

Abstract:

Due to the rapid development of modern network data, the existing algorithms for generating association rules can bring in a number of redundant rules which are far greater than the actual value of the rules. The redundant rules not only affect user analysis, but also reduce the utilization of the association rules. In order to eliminate the redundant rules, we propose a method for removing redundant association rules of business data based on the first order predicate formula, which uses the first order predicate formula to represent the association rules through the conversion of the equivalent formula. And the predicate formula is converted to the adjacency matrix by using the algorithm and the matrix equivalence, and the redundant association rules are deleted. Experimental raw data is from the UCI data set, the association rules are generated by Weka, and then the redundant rules are removed by Java and MATLAB.
 

Key words: association rules, first-order predicate formula, incidence matrix, adjacency matrix