• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    

基于分类融合和关联规则挖掘的图像语义标注

秦铭,蔡明   

  1. (江南大学物联网工程学院,江苏 无锡 214122)
  • 收稿日期:2016-10-02 修回日期:2016-12-20 出版日期:2018-05-25 发布日期:2018-05-25

Image annotation based on fusing image
classification and frequent patterns mining
 

QIN Ming,CAI Ming   

  1. (School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
  • Received:2016-10-02 Revised:2016-12-20 Online:2018-05-25 Published:2018-05-25

摘要:

图像语义自动标注问题是现阶段一个具有挑战性的难题。在跨媒体相关模型基础上,提出了融合图像类别信息的图像语义标注新方法,并利用关联规则挖掘算法改善标注结果。首先对图像进行低层特征提取,用“视觉词袋”描述图像;然后对图像特征分别进行K-means聚类和基于支持向量机的多类别分类,得到图像相似性关系和类别信息;计算语义标签和图像之间的概率关系,并将图像类别信息作为权重融合到标签的统计概率中,得到候选标注词集;最后以候选标注词概率为依据,利用改善的关联规则挖掘算法挖掘文本关联度,并对候选标注词集进行等频离散化处理,从而得到最终标注结果。在图像集Corel上进行的标注实验取得了较为理想的标注结果。

 

关键词: 图像标注, K-means聚类, 支持向量机, 关联规则挖掘

Abstract:

Automatic image annotation is a highly challenging problem.Base on cross-media relevance model, this paper presents an approach to annotate images by fusing image classification.In the annotation refinement process,the frequent patterns mining algorithm is used to refine the annotation results. Firstly, image features are extracted to generate visual words so as to describe each image. Secondly, the similarity relationship of images is generated by K-means clustering and the classification information is generated by support vector machines. Then, by knowing the relationships between the semantic labels and the images, we can use statistical methods to calculate the probability of each semantic label. The candidate semantic labels are determined by fusing the classification information of the image as weight into the probability. Finally,based on the probability of candidate label words, an improved frequent patterns mining algorithm is used to mine the text relevance degree. The candidate annotation wordset is processed by equal-frequency discretization to obtain the final annotation results. Experiments on Corel image set achieve a better annotation result.
 

Key words: image annotation, K-means clustering, support vector machines, frequent patterns mining