• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种基于改进型协同过滤算法的新闻推荐系统

吴彦文,齐旻,杨锐   

  1. (华中师范大学物理科学与技术学院,湖北 武汉 430070)
  • 收稿日期:2015-11-25 修回日期:2016-01-22 出版日期:2017-06-25 发布日期:2017-06-25
  • 基金资助:

    国家自然科学基金(71471073);湖北省高等学校省级教学研究项目(ccnu201439,ccnu201315)

A news recommendation system based on
an improved collaborative filtering algorithm

WU Yan-wen,QI Min,YANG Rui   

  1. (College of Physical Science and Technology,Central China Normal University,Wuhan 430070,China)
  • Received:2015-11-25 Revised:2016-01-22 Online:2017-06-25 Published:2017-06-25

摘要:

将个性化推荐技术运用于新闻阅读应用,以其快速、精准的特点帮助用户快捷获取兴趣新闻,是值得挖掘的研究方向。设计并实现了一种新闻推荐系统,该系统基于用户协同过滤推荐技术,通过收集用户数据,计算阅读耗时因子对用户偏好值进行修正,纳入新闻热度影响并通过热度惩罚用户相似度值;然后基于相似邻居集对用户未阅读的新闻进行Top-N排序得到推荐列表,从而向用户推送其感兴趣的新闻。经测试,原型系统能够实时更新用户兴趣模型,达到推新、推准的效果,各项功能均已达到设计预期目标。
 

关键词: 个性化推荐, 阅读耗时因子, Top-N排序

Abstract:

It is worth studying and exploring the research on the personalized recommendation technique that is used in news reader application to help users fast access interested news with its rapid and accurate features. We design and implement a news recommendation system based on user collaborative filtering recommendation technology. By collecting user data, calculating the reading time factor to correct user preference value, incorporating the influence of the news heat and punishing user similarity value by the heat, and then conducting Top-N ranking for user’s unread news based on similar neighbor sets, the news of interest is pushed to the users. The test results of the news recommendation system  show that it can provide real-time updates for the user interest model accurately and each function has achieved prospective design aim.
 

Key words: personalized recommendation;reading time factor;Top-N ranking