• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于加权网络结构的冷门资源推荐算法

刘国梁,钱晓东   

  1. (兰州交通大学交通运输学院,甘肃 兰州 730070)
     
  • 收稿日期:2016-08-16 修回日期:2016-12-14 出版日期:2018-05-25 发布日期:2018-05-25
  • 基金资助:

    国家自然科学基金(71461017)

An unpopular resource recommendation algorithm
 based on weighted network structure
 

LIU Guo-liang,QIAN Xiao-dong   

  1. (School of Traffic and Transportation,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2016-08-16 Revised:2016-12-14 Online:2018-05-25 Published:2018-05-25

摘要:

基于网络结构的推荐方法存在过度推荐“热门资源”,忽略推荐“冷门资源”的问题。然而实际中“冷门资源”更契合用户个性化的偏好需求,因此通过挖掘“冷门资源”来提高推荐结果的新颖性成为推荐算法研究方向之一。通过改进网络结构的推荐算法来提高对“冷门资源”的推荐:首先,构建用户-项目-特征词关联网络结构;其次,将用户对项目的评分差作为用户-项目能量传递的权值提高推荐准确性,将项目所具有的特征词的信息熵作为项目-特征词能量传递的权值增加“冷门资源”的推荐;最后,利用线性加权生成推荐列表。在MovieLens数据集上的实验结果表明,本文算法兼顾了推荐结果的准确性,提高了推荐结果中“冷门资源”的推荐。
 

关键词: 网络结构, 冷门资源, 信息熵, 个性化推荐

Abstract:

The recommendation methods based on network structure have the problem of over-recommending “popular resources” and ignoring “unpopular resources”. However, in practice, “unpopular resources” are more in line with users’ personalized requirements. Therefore, improving the novelty of the recommendation results by mining “unpopular resources” has become one of the research directions of the recommendation algorithms. This paper improves the recommendation method based on the network structure to improve the recommendation of “unpopular resources”. Firstly, a user-projects-tags network structure is constructed. Secondly, the users’ rating difference of the item is used as the weight of the user-projects energy transfer so as to improve the recommendation accuracy, and the information entropy of the tags is used as the weight of the projects-tags energy transfer to increase the recommendation of “unpopular resource”. Finally, the recommendation list is generated by linear weighting. Experimental results on the Movielens dataset prove that the proposed algorithm takes into account the accuracy of the recommendation results and improves the recommendation of “unpopular resources” in the recommendation results.

Key words: network structure, unpopular resource, information entropy, personalized recommendation