• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于EMD改进的Elman神经网络对股票的短期预测模型

吴曼曼1,徐建新 1,2   

  1. (1.昆明理工大学质量发展研究院,云南 昆明 650093;
    2.昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093)
  • 收稿日期:2018-08-13 修回日期:2018-10-19 出版日期:2019-06-25 发布日期:2019-06-25
  • 基金资助:

    高层次人才项目(10978220)

A shortterm stock prediction model using
an improved Elman neural network based on EMD

WU Manman1,XU Jianxin1,2   

  1. (1.Quality Development Institute,Kunming University of Science and Technology,Kunming 650093;
    2.State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,
    Kunming University of Science and Technology,Kunming 650093,China)

     
  • Received:2018-08-13 Revised:2018-10-19 Online:2019-06-25 Published:2019-06-25

摘要:

Elman神经网络在短期预测股市收盘价时存在预测趋势良好但准确度较低的问题。在Elman神经网络的思想上提出以经验模态分解EMD为基础的Elman新组合模型。应用EMD将各交易日的收盘价序列分解成不同时间尺度上的本征模函数IMF分量和剩余分量,进而利用偏自相关函数PACF计算每一个分量的滞后期,以确定各分量在Elman神经网络中的输入和输出变量,从而得到各分量的预测值,相加得到最终的预测结果。与EMD单一网络、EMDElman模型、BP网络及EMDBP模型进行实验对比,结果表明:该短期预测模型的预测值均方误差、平均绝对误差和平均绝对百分比误差都得到较大的改善;新组合模型可有效实现对股票收盘价的短期预测,且能降低非平稳性对预测结果的影响。该研究为进一步预测股市的走向提供了有效依据,也为投资者提供了更充分的决策参考。
 
 

关键词: 经验模态分解, 偏自相关函数, Elman神经网络, BP神经网络, 股票收盘价, 短期预测

Abstract:

Elman neural networks can predict stock market closing prices in the short term with good trend but low accuracy. Using the Elman neural network, we propose a new Elman combination model based on empirical mode decomposition (EMD). Firstly, the EMD is applied to forecast the closing price whose sequence is decomposed into intrinsic mode function(IMF)component and the residual component on different time scales. Secondly, we use the partial autocorrelation function (PACF) to calculate the lag time of each component, and further determine the input and output variables of each component in the Elman neural network. Thirdly, the prediction value of each component is obtained and summed up to achieve the final prediction results. Experimental results show that compared with the single Elman network, EMD-Elman model, BP neural network and EMD-BP model, the short-term prediction model can achieve prediction results with better MSE, MAE, and MAPE. The new combination model can effectively achieve the short-term prediction of the closing price of SSE and SZSE and reduce the effect of stock's closing price volatility on prediction results. This study provides an effective basis for further prediction of stock market trends, and also provides a better reference for investors to make decisions.
 

Key words: empirical mode decomposition;partial autocorrelation function;Elman neutral network;BP neural network;stock closing price, short-term forecast