• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

GA-Sim:一种基于分类和实例学习相结合的作业运行时间预测算法

肖永浩,许伦凡,熊敏   

  1. (中国工程物理研究院计算机应用研究所,四川 绵阳 621900)
  • 收稿日期:2018-10-11 修回日期:2018-12-17 出版日期:2019-06-25 发布日期:2019-06-25
  • 基金资助:

    国家重点研发计划(2016YFB0201504)

GA-Sim: A job running time prediction algorithm
based on categorization and instance learning

XIAO Yonghao,XU Lunfan,XIONG Min   

  1. (Institute of Computer Application,China Academy of Engineering Physics,Mianyang 621900,China)
  • Received:2018-10-11 Revised:2018-12-17 Online:2019-06-25 Published:2019-06-25

摘要:

在高性能计算作业调度系统中,许多调度算法依赖于对作业运行时间的准确估计,尤其是以EASY为代表的回填算法,而使用用户提供的作业运行时间往往会降低调度性能。提出了一种基于分类和实例学习相结合的作业运行时间预测算法--GA-Sim,该算法在考虑预测准确性的同时考虑了低估问题。在两个实际调度日志上的数值实验结果表明,相较于IRPA和TRIP算法,GA-Sim在取得更高预测精度的同时降低了低估率。
对数值实验结果进行了深入分析,并给出了不同情形下选择恰当预测算法的建议。

关键词: 并行作业调度, 高性能计算, 运行时间预测

Abstract:

In high performance computing job scheduling, many scheduling algorithms, especially the backfilling algorithm such as EASY, depend on the accurate estimation of job running time. Using user-supplied job running time usually significantly reduce scheduling performance. We propose a job running time prediction algorithm based on categorization and instance learning, named GA-Sim. It considers both prediction accuracy and underestimation problem. Numerical experiments on two actual scheduling logs show that compared with the IRPA and TRIP, the GASim reduces the underestimation rate while achieving higher prediction accuracy. We also make an indepth analysis of the numerical experiment results, and give suggestions for choosing an appropriate prediction algorithm  under different circumstances.

Key words: parallel job scheduling, high performance computing, running time prediction