• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于邻域优化机制的图像显著性目标检测

魏伟一,王瑜,窦镭响,文雅宏   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)
  • 收稿日期:2018-11-14 修回日期:2019-01-03 出版日期:2019-08-25 发布日期:2019-08-25
  • 基金资助:

    国家自然科学基金(61861040);甘肃省科技计划资助项目(17YF1FA119)

Salient object detection based on
neighborhood optimization mechanism

WEI Wei-yi,WANG Yu,DOU Lei-xiang,WEN Ya-hong   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2018-11-14 Revised:2019-01-03 Online:2019-08-25 Published:2019-08-25

摘要:

在显著性目标检测中,背景区域和前景区域区分度不高会导致检测结果不理想。针对这一问题,提出一种基于邻域优化机制的图像显著性目标检测算法。首先对图像进行超像素分割;然后在CIELab颜色空间建立对比图和分布图,并通过一种新的合并方式进行融合;最后在空间距离等约束下,建立邻域更新机制,对初始显著性图进行优化。实验对比表明,该算法显著性目标检测效果更好。

 

关键词: 显著性目标, 邻域优化, 超像素

Abstract:

In the salient object detection, the detection results are not ideal when the difference between the background region and the foreground region is not obvious. To address this problem, we propose a saliency object detection algorithm based on neighborhood optimization mechanism. Firstly, the image is segmented by super-pixels. Then, the contrast map and distribution map are established in the CIELab color space and they are merged by a new merging method. Finally, under the constraints such as spatial distance, a neighborhood updating mechanism is established to optimize the initial salient maps. Experimental results show that the algorithm is more effective in salient object detection.
 

Key words: salient object, neighborhood optimization, super-pixels