• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种改进的快速SLIC分割算法

马军福,魏玮   

  1. (河北工业大学计算机科学与软件学院,天津 300401)
  • 收稿日期:2015-12-07 修回日期:2016-01-22 出版日期:2017-02-25 发布日期:2017-02-25
  • 基金资助:

    天津市科技计划(14RCGFGX00846)

An improved fast SLIC segmentation algorithm

MA Jun-fu,WEI Wei   

  1. (School of Computer Science and Software,Hebei University of Technology,Tianjing 300401,China)
  • Received:2015-12-07 Revised:2016-01-22 Online:2017-02-25 Published:2017-02-25

摘要:

近年来,超像素算法被应用到计算机视觉的各个领域。超像素捕获图像冗余信息,降低图像后续处理的复杂度。超像素分割作为图像的预处理过程需要满足图像处理的实时性和准确性。在SLIC算法的框架下,所提算法的主要目的是提高超像素分割的效率;通过原图像降尺度过程,提取原图像中少量像素,生成降尺度图像;利用SLIC算法对降尺度图像进行超像素分割;初次超像素分割之后,根据降尺度图像的分割结果对原图像中像素进行K近邻分类,实现原图像的超像素最终分割结果。实验表明,对于同一处理对象,在准确度相近的状态下,本算法处理速度高于SLIC算法。

 

关键词: 超像素分割, 聚类, K-means, K近邻

Abstract:

Superpixels algorithms have been applied to various fields of computer vision in recent years. Superpixels can capture the redundant information of the image and reduce the complexity of post-processing. As the preprocessing of images, superpixels segmentation needs to meet the demands of real-time properties and accuracy of image processing. We propose an improved fast SLIC segmentation algorithm in the framework of the SLIC algorithm to improve the efficiency of superpixels segmentation. We extract a small number of pixels of the original image to generate a small scale image by reducing the scale of the original image, and employ the SLIC algorithm to do superpixels segmentation of the downscaled image. After the primary superpixel segmentation, we perform K nearest neighbor classification on the pixels of the original image according to the segmentation results of the downscaled image and realize final superpixels segmentation. Experimental results show that with similar accuracy, the proposed algorithm is much faster than the SLIC algorithm when processing the same object.

Key words: