摘要:
小目标检测是图像处理领域的一个难点,尤其是医学图像中的小目标检测。微动脉瘤MA作为眼底图像中的一类小目标,尺寸小、局部对比度较低,并且存在较多的噪声干扰,检测难度较大。传统的检测方法需要手工提取特征,难以准确检测MA。而基于深度学习的检测需要进行复杂的前期准备工作,工作量大,并且难以解决正负样本数量不平衡的问题,容易产生过拟合。稀疏编码器SAE是一种无监督机器学习算法,可以在样本数量不平衡的环境中有效地提取样本的特征。因此,提出了一种基于SAE的无监督学习方法检测MA,采用反向传播更新SAE的权重和偏置以提取样本的特征,并利用提取的特征训练Softmax,最终实现MA的准确检测。为验证方法性能,选取了Retinopathy Online Challenge、DIARETDB1和E-ophtha-MA 3个数据库分别进行实验。实验结果表明,本文方法能够准确地检测出眼底图像中的MA,并且获得了较高的准确率和灵敏度。准确率分别为98.5%,87.2%和92.6%,灵敏度分别为99.9%,99.8%和98.7%。
孙一飞,武继刚,张欣鹏. 面向眼底图像小目标检测的无监督学习方法[J]. 计算机工程与科学.
SUN Yi-fei,WU Ji-gang,ZHANG Xin-peng.
Unsupervised learning for small
objects detection in retinal images
[J]. Computer Engineering & Science.