• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1514-1520.

• 人工智能与数据挖掘 • 上一篇    

改进残差神经网络实现心音分类

张俊飞1,张贵英2   

  1. (1.广州医科大学信息与现代教育技术中心,广东 广州 511436;2.广州医科大学基础医学院,广东 广州 511436)
  • 收稿日期:2020-11-20 修回日期:2021-02-25 接受日期:2022-08-25 出版日期:2022-08-25 发布日期:2022-08-25
  • 基金资助:
    广东省医学科学技术研究基金(A2020194)

An improved residual neural network for heart sound classification

ZHANG Jun-fei1,ZHANG Gui-ying2   

  1. (1.Information and Modern Education Technology Center,Guangzhou Medical University,Guangzhou 511436;
    2.School of Basic Medical Sciences,Guangzhou Medical University,Guangzhou 511436,China)
  • Received:2020-11-20 Revised:2021-02-25 Accepted:2022-08-25 Online:2022-08-25 Published:2022-08-25

摘要: 心音的变化可以较早表征心脏疾病体征,基于深度学习实现心音信号分类具有心脏疾病临床辅助无创诊断作用。秉承特征获取简易和深度学习模型简单理念,设计了融合CBAM注意力机制、Focal Loss损失函数和多尺度特征的ResNet152网络模型对PhysioNet/CinC 2016心音数据集进行深度学习;详细介绍了CBAM注意力机制以及在网络瓶颈结构中的融合方式、Focal Loss损失函数原理、多尺度特征获取方式,并设计了5组对比消融实验和横向对比实验。实验结果表明,CBAM注意力机制、Focal Loss损失函数和多尺度特征提高了ResNet152基线网络模型分类准确率。

关键词: 梅尔频率系数特征, CBAM, Focal Loss, 多尺度

Abstract: The changes of heart sounds can represent the signs of heart diseases earlier, and the classification of heart sounds based on deep learning has the function of clinically assisting noninvasive diagnosis of heart diseases. Adhering to the concept of simple feature acquisition and simple deep learning model, a ResNet152 network model integrating CBAM attention mechanism, Focal Loss function and multi-scale features is designed to perform deep learning on the PhysioNet/CinC 2016 heart sound data set. The CBAM attention mechanism, fusion mode in network bottleneck structure, Focal Loss function principle and multi-scale feature acquisition mode are introduced in detail, and five groups of comparative ablation experiments and transverse comparison experiments are designed. Experimental results show that the CBAM attention mechanism, Focal Loss function and multi-scale features improve the classification accuracy of baseline network ResNet152.

Key words: Mel-frequency coefficient characteristic, convolutional block attention module(CBAM), Focal Loss, multi scale