摘要:
阿尔兹海默症(AD)是一种不可逆的神经退行性大脑疾病,也是老年人群中最常见的痴呆症。人工分类阿尔兹海默症的核磁共振影像(MRI)存在分类延迟和分类耗时等问题。随着人口老龄化的日趋严重,准确而快速地分类出阿尔兹海默症患者具有重要的研究意义。将卷积神经网络(CNN)技术和核磁共振成像技术相结合,设计了一个3D-ResNet算法用于AD分类,在验证集上取得了98.39%的准确性、96.74%的敏感性和99.99%的特异性,在测试集上取得了97.43%的准确性、94.92%的敏感性和99.99%的特异性,每个患者的分类时间是0.23 s。此外,针对AD的发病机制尚不明确的问题,通过类激活映射(CAM)技术来可视化与AD相关的脑部区域。