胡福年,董倩男
HU Fu-nian,DONG Qian-nan
摘要:
针对传统DE算法在求解复杂函数时会出现早熟收敛、收敛精度低、收敛速度慢等缺陷,提出了一种多策略自适应变异的差分进化算法MsA-DE。将3种变异策略两两结合,随机分配所占比重,以增加种群的多样性;通过引入进化程度阈值,自适应地选择最合适的变异策略,平衡算法的全局搜索和局部搜索能力;对越界的变异个体进行处理,保证种群的多样性和有效性。加入扰动机制提高算法跳出局部最优的能力,同时提高最优解的精度。将该算法用于14个测试函数的优化中,结果表明,MsA-DE算法与其它4种算法相比具有更高的收敛精度和跳出局部最优的能力。将该算法应用于铁路功率调节器RPC的容量优化问题中,结果表明,该算法能够减小RPC补偿装置的容量,提高装置的经济性。