• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (08): 1359-1366.

• 计算机网络与信息安全 • 上一篇    下一篇

降低OFDM立方度量的最优限幅滤波算法及神经网络实现

袁田1,朱红亮2,周娟3,朱晓东2   

  1. (1.中国电子科技集团公司第十研究所,四川 成都 610036;2.电子科技大学信息与通信工程学院,四川 成都 611731;

    3.成都信息工程大学通信工程学院,四川 成都 610225)

  • 收稿日期:2019-09-26 修回日期:2020-04-16 接受日期:2020-08-25 出版日期:2020-08-25 发布日期:2020-08-29
  • 基金资助:
    国家自然科学基金(61601064);四川省教育厅重点项目(18ZA0225)

An optimal filtering and clipping technique and a neural network based realization scheme for cubic metric reduction in OFDM system

YUAN Tian1,ZHU Hong-liang2,ZHOU Juan3,ZHU Xiao-dong2   

  1. (1.The 10th Research Institute of China Electronic Technology Group Corporation,Chengdu 610036;
    2.School of Information and Communication Engineering,
    University of Electronic Science and Technology of China,Chengdu 611731;
    3.College of Communication Engineering,Chengdu University of Information Technology,Chengdu 610225,China)

  • Received:2019-09-26 Revised:2020-04-16 Accepted:2020-08-25 Online:2020-08-25 Published:2020-08-29

摘要: 正交频分复用(OFDM)信号的一个主要缺点是信号包络波动过大。峰均功率比是常用的度量OFDM信号包络波动大小的指标,而近期研究表明立方度量可以更加准确地度量OFDM信号包络波动。传统限幅滤波技术可以有效降低立方度量,但其滤波设计并不能保证处理后的信号性能达到最优。针对这一问题,提出了一种最优的限幅滤波设计方案来降低立方度量,其关键思想是考虑滤波操作对信号带内、带外部分的影响,将滤波器设计建模为一个优化问题,通过求解得到最优的滤波器,并与限幅操作结合降低立方度量。由于优化问题的求解复杂度较高,还提出了一种基于深度神经网络的最优限幅滤波实现方案。仿真结果表明,所提出的最优限幅滤波算法及其神经网络实现方案性能相当,但后者的复杂度要低得多。与其它的已知算法相比,新提出的算法及其神经网络实现方案的性能都具有明显的优势。

关键词: 立方度量, 深度学习, 滤波器设计, 正交频分复用, 峰均功率比, 限幅滤波

Abstract: One of the main drawbacks of Orthogonal Frequency Division Multiplexing (OFDM) signals is the large signal envelope fluctuation. Peak to Average Power Ratio (PAPR) is a commonly used metric for quantifying the envelope fluctuations of OFDM signals. However, recent researches have shown that Cubic Metric (CM) is a more accurate metric when it is used to quantify the envelope fluc- tuation. Clipping and filtering technique can be employed to reduce the CM. The filtering operation in traditional clipping and filtering technique cannot lead the signal to the optimal performance. Therefore, an optimal clipping and filtering algorithm for CM reduction is proposed. The key idea is to consider the impact of filtering operation on in-band and out-of-band components of signals and model the filter design as an optimization problem. The problem is solved to obtain an optimal filter, which is combined with clipping to reduce CM efficiently. Due to the high complexity of solving the optimization problem, a deep neural network based realization scheme of the optimal clipping and filter algorithm is further proposed. Simulation results show that both the proposed algorithm and corresponding neural network scheme have close performance, but the latter has much lower complexity. Compared with some existing algorithms, the proposed algorithm and scheme exhibit better performance.

Key words: cubic metric, deep learning, filter design, OFDM, peak to average power ratio, clipping and filtering