计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (08): 1414-1422.
李勇1,陈思萱1,贾海2 ,王霞2
LI Yong1,CHEN Si-xuan1,JIA Hai2,WANG Xia2
摘要: 机器学习和深度学习技术可用于解决医学分类预测中的许多问题,其中一些分类算法的预测精度较高,而另一些算法的精度有限。
提出了基于C-AdaBoost模型的集成学习算法,对乳腺癌疾病进行预测,发现了判断乳腺癌是否复发、乳腺癌肿瘤是否为良性的最优特征组合。通过逐步回归方法对现有特征进行二次选取,并结合C-AdaBoost模型使得预测效果更优。大量实验表明,基于C-AdaBoost模型的算法的预测准确率比SVM、Naive Bayes、RandomForest以及传统的集成学习模型等机器学习分类器的准确率最多可提高19.5%,从而可以更好地帮助医生进行临床决策。