• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (12): 2186-2195.

• 计算机网络与信息安全 • 上一篇    下一篇

基于优化特征堆叠与集成学习的车联网入侵检测模型

刘沛,刘昌华,林俏伶   

  1. (武汉轻工大学数学与计算机学院,湖北 武汉 430048)
  • 收稿日期:2023-12-22 修回日期:2024-02-16 接受日期:2024-12-25 出版日期:2024-12-25 发布日期:2024-12-23
  • 基金资助:
    湖北省高等学校省级教学研究项目 (2022343)

An intrusion detection model for vehicular networks based on optimized feature stacking and ensemb

LIU Pei,LIU Chang-hua,LIN Qiao-ling    

  1. (School of Mathematics & Computer Science,Wuhan Polytechnic University,Wuhan 430048,China)
  • Received:2023-12-22 Revised:2024-02-16 Accepted:2024-12-25 Online:2024-12-25 Published:2024-12-23

摘要: 随着车载网络复杂性的提高和车辆与外界连接方式多样性的丰富,车联网面临的网络安全风险大幅度上升。针对现有入侵检测的特征提取不充分、模型分类不够精确等问题,提出了一种基于特征堆叠与集成学习的车联网入侵检测模型。该模型通过将一维数据流量按照特征步进行切分,在第三维度上进行堆叠转化为图像,并使用VGG19模型提取特定类型的特征,Xception模型捕获通道内和通道间的信息,Inception模型处理复杂类别图像获取多尺度信息,3个模型集成CS-IDS模型。在2个开源的车联网数据集Car-Hacking和流量数据集CIC-IDS2017上测试了该模型,分别获得了99.97%和96.44%的F1分数,且该模型可在12 ms内完成单条流量的快速检测,表明了所提CS-IDS模型的有效性和可用性。

关键词: 入侵检测, 集成学习, 特征堆叠, 车联网

Abstract: With the increasing complexity of in-vehicle networks and the diversity of vehicle-to- everything (V2X) connections, the cybersecurity risks faced by the internet of vehicles (IoV) have significantly escalated. Addressing the issues of insufficient feature extraction and inaccurate model classification in existing intrusion detection systems, a novel intrusion detection model for IoV based on feature stacking and ensemble learning is proposed. This model slices one-dimensional data traffic into segments based on feature steps, stacks them into images in the third dimension, and utilizes the VGG19 model to extract specific types of features, the Xception model to capture intra-channel and inter-channel information, and the Inception model to process complex image categories and obtain multi-scale information. These three models are then integrated into the CS-IDS model. The proposed model was tested on two open-source IoV datasets, Car-Hacking and the traffic dataset CIC-IDS2017, achieving F1 scores of 99.97% and 96.44%, respectively. Moreover, the model can complete rapid detection of a single traffic flow within 12 ms, demonstrating the effectiveness and availability of the proposed CS-IDS model.

Key words: intrusion detection, ensemble learning, feature stacking, internet of vehicles(IoV) ,