• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (11): 2020-2029.

• 图形与图像 • 上一篇    下一篇

强干扰条件下机场道面细小裂缝自动识别算法

李海丰,吴治龙,聂晶晶   

  1. (中国民航大学计算机科学与技术学院,天津 300300)
  • 收稿日期:2020-03-10 修回日期:2020-05-13 接受日期:2020-11-25 出版日期:2020-11-25 发布日期:2020-11-30
  • 基金资助:
    国家重点研发计划(2019YFB1310601)

An automatic fine crack recognition algorithm for airport pavement under significant noises

LI Haifeng,WU Zhilong,NIE Jingjing   

  1. (School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)

  • Received:2020-03-10 Revised:2020-05-13 Accepted:2020-11-25 Online:2020-11-25 Published:2020-11-30

摘要: 针对机场道面裂缝极其细小,而基于深度相机的裂缝检测技术面临道面表观结构复杂和平台剧烈震动的双重强干扰的难题,提出了结合L2正则化与动态阈值贪心策略的道面主轮廓建模算法,并基于此实现了机场道面毫米级细小裂缝的精确检测。首先,设计了基于L2正则化约束的道面主轮廓模型估计方法,解决了因表观结构复杂而导致的道面主轮廓过拟合问题;其次,提出基于动态阈值的改进贪心算法,通过迭代去除异常点的方式抑制检测平台震动带来的噪声干扰;最后,基于构建的道面主轮廓模型,提取并融合多方向的机场道面主轮廓,并利用裂缝的深度与形态信息实现裂缝提取。通过在真实机场道面数据集上的测试结果表明,该算法能够精确地完成道面主轮廓重建和细小裂缝识别,且识别性能优于多种现有经典的裂缝检测算法。

关键词: 机场道面, 裂缝检测, 三维深度数据, L2正则化, 贪心策略, 主轮廓提取

Abstract: Cracks on airport pavement are extremely fine, and depth camera based crack detection technology is faced with the interference from both complex pavement apparent structure and severe vibration of the platform. To handle this problem, a main profile modeling algorithm by combining L2 regularization and dynamic threshold greedy strategy is proposed to achieve accurate crack detection results of millimeter level. Firstly, the main profile of pavement is modelled constrained with L2 regularization, thus overcoming the overfitting problem caused by the complex apparent structure. Secondly, an improved greedy algorithm based on dynamic threshold is proposed to suppress noise interference by iteratively removing abnormal points caused by platform vibration. Finally, based on the constructed main profile model, the multidirection main profiles of the airport pavement are extracted and fused, and the crack depth and morphology information are used to extract the crack. Experiments on real airport pavement data show that the proposed algorithm can reconstruct the main profile of the pavement accurately, detect the fine cracks successfully, and have better crack detection performance than the existing techniques.

Key words: airport pavement, crack detection, 3D rang data, L2 regularization, greedy strategy, main profile extraction