• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (12): 2217-2222.

• 图形与图像 • 上一篇    下一篇

快速多域卷积神经网络和光流法融合的目标跟踪

张晓丽,张龙信,肖满生,左国才   

  1. (湖南工业大学计算机学院,湖南 株洲 412007) 
  • 收稿日期:2020-03-03 修回日期:2020-05-13 接受日期:2020-12-25 出版日期:2020-12-25 发布日期:2021-01-05
  • 基金资助:
    国家自然科学基金(61702178);湖南省自然科学基金(2018JJ4068,2020JJ7007);湖南省教育厅科研项目(18C0499)

Target tracking by deep fusion of fast multi-domain convolutional neural network and optical flow method

ZHANG Xiao-li,ZHANG Long-xin,XIAO Man-sheng,ZUO Guo-cai#br# #br# #br#   

  1. (School of Computer Science,Hunan University of Technology,Zhuzhou 412007,China)

  • Received:2020-03-03 Revised:2020-05-13 Accepted:2020-12-25 Online:2020-12-25 Published:2021-01-05

摘要: 针对卷积神经网络目标跟踪算法速度较慢的问题,提出一种融合快速多域卷积神经网络(Faster MDNet)与光流法的目标跟踪算法。使用光流法获取目标的运动状态并取得初选框作为跟踪目标位置,然后将初选框用作Faster MDNet的输入,使用Faster MDNet作为检测器,取得跟踪目标的确切位置和边界框。在基准数据集VOT2014上的实验表明,该算法在线跟踪速度比对比算法提高了8倍,精度提升了约10%。


关键词: 深度学习, 卷积神经网络, 光流法, 目标跟踪

Abstract: Aiming at the problem of slow speed of the convolutional neural network target tracking algorithm, a target tracking algorithm combining fast multi-domain convolutional neural network (Faster MDNet) and optical flow method is proposed. The optical flow method is used to obtain the moving state of the target, and the preliminary selection box is used as the tracking target position. Then, the preliminary selection box is used as the input of Faster MDNet, and Faster MDNet is used as the detector to obtain the exact position and bounding box of the tracking target. Experiments on the target tracking benchmark data set VOT2014 prove that the algorithm’s online tracking speed is increased by 8 times and the accuracy is improved by 10%.


Key words: deep learning, convolutional neural network, optical flow method, target tracking