• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (05): 926-935.

• 人工智能与数据挖掘 • 上一篇    下一篇

一种融合行为与结构特征推理的造假群组检测算法

张怡睿宸1,李云峰2,顾旭阳1,纪淑娟1   

  1. (1.山东科技大学山东省智慧矿山信息技术重点实验室,山东 青岛 266590;

    2.中国银保监会衡水监管分局,河北 衡水 053000)

  • 收稿日期:2020-08-12 修回日期:2020-11-10 接受日期:2021-05-25 出版日期:2021-05-25 发布日期:2021-05-19
  • 基金资助:
    国家重点R&D计划(2018YFC0831002);国家自然科学基金(71772107,61502281);教育部人文社科基金(18YJAZH136);山东省重点R&D计划(2018GGX101045);山东省自然科学基金(ZR2018BF013,ZR2018BF014);青岛市创新研究基金(18-2-2-41-jch);青岛社会科学规划研究项目(QDSKL1801138)

A fraud group detection algorithm based on behavior and structure features reasoning

ZHANG Yi-rui-chen1,LI Yun-feng2,GU Xu-yang1 ,JI Shu-juan1   

  1. (1.Shandong Provincial Key Laboratory of Wisdom Mine Information Technology,

    Shandong University of Science and Technology,Qingdao 266590;

    2.Hengshui Regulatory Branch,China Banking and Insurance Regulatory Commission,Hengshui 053000,China)

  • Received:2020-08-12 Revised:2020-11-10 Accepted:2021-05-25 Online:2021-05-25 Published:2021-05-19

摘要: 在线评论对用户的购物决策有重要的影响作用,这导致一些不良商家雇佣大量水军有组织、有策略地给自己刷好评,以提高销量赚取更大利润,给竞争对手刷差评来抹黑对手,以降低其销量。为了检测这种有组织的水军群组,提出一种融合行为与结构特征推理的造假群组检测算法。该算法包含2部分:第1部分用频繁项挖掘方法产生候选群组,然后使用行为指标来计算群组中每个成员的协同造假可疑度,将该可疑度看作先验概率;第2部分先为每个群组建立加权评论者-商品二部图,然后使用循环信念传播算法推理后验概率,将推理后得到的后验概率值作为该成员的最终协同造假可疑度,最后使用熵值法来判定是否为共谋群组。在真实数据集上的实验结果表明,所提算法性能优于比较算法。

关键词: 共谋群组, 虚假检测, 频繁项挖掘, 行为推理, 结构推理

Abstract: Online reviews have an important influence on users' shopping decisions. This has resulted in that some malicious merchants hire a large number of review spammers in an organized and strategic way to promote some target products for increasing sales and earning greater profits, and to demote some target products for reducing their sales. In order to detect the organized spammer groups, this paper proposes a detection algorithm that combines behaviour and structural features reasoning. This algorithm consists of two parts. The first part uses the frequent item mining method to generate candidate groups, then uses behaviour indicators to calculate the cooperative fraud suspicion for each member of the group, and regards this suspicious degree as a priori probability. The second part first constructs a weighted reviewer-commodity bipartite graph for each group, and then uses the loopy belief propagation algorithm to infer the posterior probability. The posterior probability obtained after inference is taken as the final cooperative fraud suspicion of the member. Finally, the entropy method is used to determine whether it is a collusion group or not. Experimental results on real datasets show that the proposed algorithm has better performance than the comparison algorithm.


Key words: collusion group, fraud detection, frequent item mining, behavior reasoning, structure reasoning