• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1200-1209.

• 高性能计算 • 上一篇    下一篇

基于采样尺度自适应的多尺度量子谐振子优化算法并行化

焦育威1,王鹏1,2,辛罡3,4   

  1. (1.西南民族大学计算机科学与技术学院,四川 成都 610225;2.广东省国产服务器工程中心,广东 广州 510000; 

    3.中国科学院大学,北京 100049;4.中国科学院成都计算机应用研究所,四川 成都 610041)

  • 收稿日期:2020-06-09 修回日期:2020-09-03 接受日期:2021-07-25 出版日期:2021-07-25 发布日期:2021-08-16
  • 基金资助:
    国家自然科学基金(60702075);西南民族大学研究生创新型科研项目(CX2020SZ03)

A scale-adaptive multi-scale quantum harmonic oscillator algorithm and its parallelization

JIAO Yu-wei1,WANG Peng1,2,XIN Gang3,4   

  1. (1.School of Computer Science and Technology,Southwest Minzu University,Chengdu 610225;

    2.Guangdong Domestic Server Engineering Center,Guangzhou 510000;

    3.University of Chinese Academy of Sciences,Beijing 100049;

    4.Chengdu Institution of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China)

  • Received:2020-06-09 Revised:2020-09-03 Accepted:2021-07-25 Online:2021-07-25 Published:2021-08-16

摘要: 多尺度量子谐振子优化算法MQHOA是基于量子波函数理论提出的元启发式算法,传统MQHOA寻优过程中不同个体的采样尺度不具有差异性,这种机制限制了解的多样性。针对适应度不同的采样个体,提出采样尺度自适应策略,将采样情况差的个体采样尺度合理扩大,增加迭代过程中不同采样个体所使用采样尺度的多样性,并基于采样尺度的差异性提出并行化框架。选取7组测试函数将改进后的算法(MQHOA-PS)与MQHOA在华为鲲鹏920和AMD EPYC 7452处理器上进行测试实验,实验结果表明,改进后的算法寻优具有较高的精度和成功率,并且所需时间更短。

关键词: 多尺度, 自适应, 优化算法, 并行计算, 华为鲲鹏920, AMD EPYC 7452

Abstract: Multi-scale quantum harmonic oscillator algorithm (MQHOA) is a meta-heuristic algorithm based on the theory of Quantum wave function. In the traditional MQHOA optimization process, the sampling scale of different individuals is not different. This mechanism limits the diversity of solutions. Aiming at the sampled individuals with different fitness levels, a scale adaptive strategy is proposed. This strategy reasonably expands the scale of individuals with poor sampling conditions and increases the diversity of sampling scales used by different individuals in the iterative process. In addition, a parallelization framework is proposed based on the scale difference. Seven groups of test functions are selected to test the improved algorithm (MQHOA-PS) and MQHOA on the Huawei Kunpeng 920 processor and AMD EPYC 7452 processor. The experiments show that the improved algorithm has higher accuracy and success rate and less time.

Key words: multiscale, adaptive, optimization algorithm, parallel computing, Huawei Kunpeng 920, AMD EPYC 7452