• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (11): 1994-2002.

• 图形与图像 • 上一篇    下一篇

带形状参数的三次三角域Bézier曲面

查东东,刘华勇,王曾珍   

  1. (安徽建筑大学数理学院,安徽 合肥 230601)
  • 收稿日期:2020-07-05 修回日期:2020-09-12 接受日期:2021-11-25 出版日期:2021-11-25 发布日期:2021-11-22
  • 基金资助:
    安徽省高等学校自然科学研究项目 (KJ2018A0518);2020年度校级质量工程项目(2020kj15,2020jy22)

Cubic triangular Bézier surface with shape parameters

ZHA Dong-dong,LIU Hua-yong,WANG Zeng-zhen   

  1. (School of Sciences and Physics,Anhui Jianzhu University,Hefei 230601,China)
  • Received:2020-07-05 Revised:2020-09-12 Accepted:2021-11-25 Online:2021-11-25 Published:2021-11-22

摘要: 为了能提升三次三角域Bézier曲面的形状控制能力,从局部形状参数和全局形状参数的角度出发,构造了带有2种参数的三次三角域Bernstein基函数。借由基函数定义了三次三角域λα-Bézier曲面,通过改变2种参数的取值达到不同的控制效果。将三角域λα-Bézier曲面与Bézier曲面进行了形状调节、时间复杂度和控制网格逼近程度3方面的比较,得出了三角域λα-Bézier曲面的优势。并给出了三次三角域λα-Bézier曲面片间满足C1、G1连续的条件及证明,相关实例也证实:三次三角域λα-Bézier曲面不仅继承了三次三角域Bézier曲面的优良性质,还可以通过变化参数取值来提高曲面的形状控制能力。在曲面拼接时,也可以通过改变参数来构造多种拼接造型。


关键词: 三角域Bézier曲面;基函数;形状参数;曲面拼接;连续性 

Abstract: In order to improve the shape control capability of the cubic triangular Bézier surface, the Bernstein basis function of the cubic triangular with two parameters is constructed from the point of view of the local and global shape parameters. The cubic triangular  λα-Bézier surface is defined by the basis function, and different control effects are achieved by changing the values of the two parameters. The condition of  C1,G1,  continuity between cubic triangular λα-Bézier surface patches and its proof is given. Related examples also confirm that: the cubic triangular λα-Bézier surface not only inherits the good properties of the cubic triangular Bézier surface, but also improves the shape control ability of the surface by changing the values of the parameters. In surface stitching, the parameter is also changed to construct multiple joining styles.  


Key words: triangular Bézier surface, base function, shape parameter, surface joining, continuity