• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (11): 1986-199.

• 图形与图像 • 上一篇    下一篇

基于改进卷积神经网络的腹部动脉血管分割

纪玲玉1,高永彬1,蔡清萍2,卫子然2,廖薇1    

  1. (1.上海工程技术大学电子电气工程学院,上海 201620;2.上海长征医院军医普通外科,上海 200003)
  • 收稿日期:2020-08-16 修回日期:2020-09-14 接受日期:2021-11-25 出版日期:2021-11-25 发布日期:2021-11-19
  • 基金资助:
    上海市上海市科委重点项目(18411952800);上海工程技术大学协同创新基金(0232-E2-6202-19-022)

Abdominal artery segmentation based on improved convolutional neural network

JI Ling-yu1,GAO Yong-bin1,CAI Qing-ping2,WEI Zi-ran2,LIAO Wei1#br#

#br#
  

  1. (1.School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620;

    2.General Surgery of Military Medicine,Changzheng Hospital,Shanghai 200003,China)

  • Received:2020-08-16 Revised:2020-09-14 Accepted:2021-11-25 Online:2021-11-25 Published:2021-11-19

摘要: 腹部动脉血管分割对于胃癌淋巴结的转移和肝动脉变异类型的判断至关重要。针对腹部动脉血管分割精度低、易断裂等问题,提出一种改进卷积网络架构的腹部动脉分割方法。卷积网络的编码部分使用带有卷积注意的预训练模块(resnet34),避免了梯度消失且可更好地获取图像的特征信息。为了扩大感受野和聚集多尺度特征信息,提出了一种新的多尺度特征融合模块。此外,动脉血管的边缘结构信息的学习至关重要,引入注意力导向滤波作为信息扩展路径,使输出特征更加结构化,提升血管分割的精度。所提方法在腹部动脉血管分割的实验结果表明,与基础网络U-Net相比,所提方法在灵敏度和交并比上分别提升了2.84%和1.19%。与CE-Net网络相比,在灵敏度和交并比上分别提升了1.34%和161%。

关键词: 腹部动脉血管分割, 卷积神经网络, 注意力导向滤波, 迁移学习

Abstract: Abdominal artery segmentation is an essential task for the diagnosis of gastric cancer lymph node metastasis and the judgment of hepatic artery variant type. In order to solve the problems of low segmentation accuracy and easy fracture of abdominal artery, this paper proposes an abdominal artery segmentation method based on improved convolutional neural network. A pre-training module (resnet34) with convolutional attention is employed in encoding part of convolutional network to avoid the disappearance of gradients and better obtain the feature information of the images. In order to expand the receptive field and gather multi-scale feature information, a new multi-scale feature fusion module is proposed. In addition, the learning of the edge structure information of arteries is very significant. Attention guide filtering is introduced as the information expansion path to make the output features more structured and improve the accuracy of vascular segmentation. The proposed method is used to evaluate the performance of the abdominal artery segmentation. The experimental results show that, compared with the basic network U-Net, the sensitivity and intersection-over-union (IOU) of the proposed method are increased by 2.84% and 1.19%, respectively. Compared with the network CE-Net, the sensitivity and IOU are improved by 1.34% and 1.61%, respectively.


Key words: abdominal artery segmentation, convolutional neural network, attention guided filtering, transfer learning