• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (11): 2011-2019.

• 人工智能与数据挖掘 • 上一篇    下一篇

自动驾驶模糊神经网络速度规划方法

王猛1,2,陈珏璇3,邓正兴3   

  1. (1.华中科技大学人工智能与自动化学院,湖北 武汉 430074;

    2.武汉光庭信息技术股份有限公司K+Lab实验室,湖北 武汉 430073;

    3.武汉光庭科技有限公司智能驾驶部,湖北 武汉 430200)
  • 收稿日期:2020-04-17 修回日期:2020-09-19 接受日期:2021-11-25 出版日期:2021-11-25 发布日期:2021-11-23
  • 基金资助:
    2019年湖北省博士后创新实践岗位项目

A velocity planning method based on fuzzy-neural network for autonomous driving

WANG Meng1,2,CHEN Jue-xuan3,DENG Zheng-xing3   

  1. (1.School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074;

    2.K+Lab Laboratory,Wuhan KOTEI Informatics Co.,Ltd.,Wuhan 430073;

    3.Intelligent Driving Department,Wuhan KOTEI Technology Corporation,Wuhan 430200,China)

  • Received:2020-04-17 Revised:2020-09-19 Accepted:2021-11-25 Online:2021-11-25 Published:2021-11-23

摘要: 为提升自动驾驶的舒适性,降低速度规划算法的复杂度,提出了一种基于模糊神经网络的纵向速度规划方法。将人工驾驶经验总结为模糊规则表,建立了模糊速度规划模型,结合神经网络的自学习功能修正模糊速度规划模型,建立了模糊神经网络速度规划模型。分析了静态障碍物和动态障碍物场景,通过仿真验证了所提速度规划方法的可行性,与传统方法相比,加速度的平滑性能更好。所提速度规划方法具有一定的抗干扰性能,工程实现简单,保证了速度规划的实时性与稳定性。

关键词: 自动驾驶, 速度规划, 模糊规划模型, 神经网络

Abstract: In order to improve the comfort performance of autonomous driving and reduce the time complexity of velocity planning algorithm, a longitudinal velocity planning method based on fuzzy neural network is proposed. Manual driving experience is summarized up as a fuzzy rule table, and a fuzzy planning model is established. By utilizing the self-learning function of neural network, the fuzzy planning model is modified, so as to build the fuzzy neural network planning model. Static obstacle scene and dynamic obstacle scene are analyzed. Simulations verify the algorithm feasibility. Compared with the traditional fuzzy planning method, the proposal have smoother acceleration curve. The proposed method has certain anti-disturbance ability, is easy to implement, and ensures the real-time performance and stability.


Key words: autonomous driving, velocity planning, fuzzy planning model, neural network