• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (01): 132-137.

• 图形与图像 • 上一篇    下一篇

DenseNet在声纹识别中的应用研究

张玉杰,张赞   

  1. (陕西科技大学电气与控制工程学院,陕西 西安710021)
  • 收稿日期:2020-08-16 修回日期:2020-10-11 接受日期:2022-01-25 出版日期:2022-01-25 发布日期:2022-01-13
  • 基金资助:
    陕西省科技计划项目(2020GY-063);西安市科技计划项目(2020KJRC0002);西安市未央区科技计划项目(201816)

Application of DenseNet in voiceprint recognition

ZHANG Yu-jie,ZHANG Zan   

  1. (School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China)
  • Received:2020-08-16 Revised:2020-10-11 Accepted:2022-01-25 Online:2022-01-25 Published:2022-01-13

摘要: 为了提高声纹识别技术的识别性能,将DenseNet应用于语谱图实现声纹识别,从提高网络的运算效率和增强声纹特征的表征能力2个方面对DenseNet进行优化,提出采用深度可分离卷积来减少网络的参数量,以及增加中心损失函数项来提高声纹特征的表征能力。从训练结果可以看出,通过深度可分离卷积,网络的参数量减少了25.5%,模型大小减少了24.6%;从仿真结果可以看出,中心损失项的增加使声纹特征的聚类效果更加明显,提高了声纹特征的表征能力。因此,改进后的DenseNet在语谱图声纹识别领域取得了好的识别效果。

关键词: 声纹识别, 语谱图, DenseNet, 深度可分离卷积, 中心损失函数

Abstract: In order to improve the recognition performance of voiceprint recognition technology, DenseNet is applied to the spectrogram to realize voiceprint recognition. DenseNet is optimized from two aspects: improving the computing efficiency of the network and enhancing the characterization ability of voiceprint features. Depth separable convolution is used to reduce the amount of network parameters, and center loss function item is increased to improve the characterization ability of voiceprint features. The training results show that, through the depth separable convolution, the network parameters are reduced by 25.5%, and the model size is reduced by 24.6%; The simulation results show that the increase of the center loss item makes the clustering effect of the voiceprint feature more obvious and improves the characterization ability of voiceprint features. Therefore, the improved DenseNet can achieve good recognition results in the field of spectrogram and voiceprint recognition.


Key words: voiceprint recognition, spectrogram, DenseNet, depth separable convolution, center loss