• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (04): 691-700.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于二分网络的长期推荐

王玫申1,张鹏1,薛乐洋1,2   

  1. (1.北京邮电大学理学院,北京 100876;2.北京师范大学复杂系统国际科学中心,广东 珠海 519087)
  • 收稿日期:2021-04-20 修回日期:2021-12-11 接受日期:2023-04-25 出版日期:2023-04-25 发布日期:2023-04-13
  • 基金资助:
    国家重点研发计划(2020YFF0305300);北京邮电大学提升科技创新能力行动计划(2019XD-A10)

Long-term recommendation based on bipartite network

WANG Mei-shen1,ZHANG Peng1,XUE Le-yang1,2   

  1. (1.School of Science,Beijing University of Posts and Telecommunications,Beijing 100876;
    2.International Academic Center of Complex Systems,Beijing Normal University,Zhuhai 519087,China)
  • Received:2021-04-20 Revised:2021-12-11 Accepted:2023-04-25 Online:2023-04-25 Published:2023-04-13

摘要: 目前在基于二分网络的推荐算法研究中,关注更多的是推荐的短期性能,而在现实生活中,对每一个用户的推荐是一个长期的过程,在线网络会随着时间的推移而发展,并且用户在购物时往往有求新的消费心理,因此长期推荐的多样性也需要更多的关注。针对这些问题,将短期推荐中表现良好的经典算法应用到长期推荐中,发现长期的推荐多样性和准确性逐渐变差;为了改善长期推荐的表现,设计了一个融合时间因子的推荐算法,并将其应用到长期推荐中;实验结果表明,提出的算法在不损失推荐准确性的前提下,显著提高了长期推荐的多样性。

关键词: 推荐系统, 二分网络, 长期推荐, 扩散算法, 时间信息

Abstract: Nowadays, most studies about recommender systems based on the bipartite network focus on the short-term performance of algorithms. However, in real life, recommendation for each user are a long-term process, and online networks evolve over time. Meanwhile, users tend to select novel goods when shopping. Therefore, it is necessary to pay more attention to the diversity of long-term recommendations. Aiming at the problem, the classical algorithm with good performance in short-term recommendations is applied to long-term recommendations and the diversity and accuracy of long-term recommendations are both gradually decreased. To improve the performance of long-term recommendations, a recommendation algorithm that incorporates the time factor is designed, and applied to the long-term recommendation. Experimental results show that the proposed algorithm significantly improves the long-term recommendation diversity without losing recommendation accuracy.

Key words: recommender system, bipartite network, long-term recommendation, diffusion-based algorithm, time information