计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (04): 665-673.
刘云,肖添,王梓宇
LIU Yun,XIAO Tian,WANG Zi-yu
摘要: 针对互联网中存在的恶意行为,特别是社交网络应用中的在线恶意行为,通常使用基于用户多维特征的聚类分析算法进行检测。提出一种动态特征选择算法(DFSA),使用具有特征加权熵的模糊C均值目标函数,首先为参数构建一个学习模式,自动计算每个特征权重,并剔除权重小于阈值的特征,动态选择重要的特征,迭代地更新隶属函数、簇中心和特征权重直到最优化为止,最后识别出具有高精度的恶意用户行为簇。仿真结果表明,对比SDAFS算法、ELAFC算法和NADMB算法,DFSA算法在Rand指数、Jaccard指数和归一化互信息量3个主要性能指标上均有改善。