计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1467-1473.
文武1,2,3,万玉辉1,2,文志云1,2
WEN Wu1,2,3,WAN Yu-hui1,2,WEN Zhi-yun1,2
摘要: 为获取文本中的较优特征子集,剔除干扰和冗余特征,提出了一种结合过滤式算法和群智能算法的混合特征寻优算法。首先计算每个特征词的信息增益值,选取较优的特征作为预选特征集合,再利用正余弦算法对预选特征进行寻优,获取精选特征集合。为较好地平衡正余弦算法中的全局搜索和局部开发能力,加入了自适应惯性权重;为更精确地评价特征子集,引入以特征数量和准确率进行加权的适应度函数,并提出了新的位置更新机制。在KNN和贝叶斯分类器上的实验结果表明,该特征选择算法与其它特征选择算法及改进前的算法相比,分类准确率得到了一定的提升。