• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (05): 870-878.

• 图形与图像 • 上一篇    下一篇

用于CD56图像分割的细胞标注精细化与自适应加权损失

刘榕,伍欣,敖斌,文青,李宽   

  1. (东莞理工学院网络空间安全学院,广东 东莞 523808)
  • 收稿日期:2021-10-28 修回日期:2021-12-25 接受日期:2022-05-25 出版日期:2022-05-25 发布日期:2022-05-24
  • 基金资助:
     国家重点研发计划(2018YFB1003203)

Cell annotation refinement and adaptive weighted loss for CD56 image segmentation

LIU Rong,WU Xin,AO Bin,WEN Qing,LI Kuan   

  1. (School of Cyberspace Security,Dongguan University of Technology,Dongguan 523808,China)
  • Received:2021-10-28 Revised:2021-12-25 Accepted:2022-05-25 Online:2022-05-25 Published:2022-05-24

摘要: CD56是神经细胞黏附分子,可用于多种肿瘤细胞的诊断与研究。CD56是目前最新的肿瘤分子标记物之一,计算机医学图像处理领域目前对CD56图像的研究刚刚起步。随着诸如语义分割深度学习技术的发展,越来越多的研究人员将语义分割技术应用到医学图像处理中,以实现辅助医疗诊断。CD56图像中的背景、阴性细胞和阳性细胞像素点个数的比例非常不平衡,大致为70∶10∶1,这会影响语义分割技术用于CD56图像分割的效果。对不同类别的像素点添加损失权重且对每个像素点添加自适应权重,改进了相关语义分割模型的损失函数,使得模型能更关注细胞,特别是阳性细胞。同时使用聚类的方法,在模型训练之前精细化对CD56图像的标注,进一步提升了模型的分割精度。针对CD56图像数据集的实验结果表明,对图像标注的精细化和对相关语义分割模型的损失函数的改进有效提升了模型对CD56图像的分割精度。

关键词: CD56图像, 语义分割, 深度学习, 医学图像处理, 聚类, 自适应加权损失

Abstract: CD56 is a nerve cell adhesion molecule that can be used in the diagnosis and study on a variety of tumor cells. CD56 is one of the latest tumor molecular markers, and the research on CD56 images in the field of digital medical image processing has just started. With the development of deep learning technologies such as semantic segmentation, more and more researchers are applying semantic segmentation technology to medical image processing in order to assist doctors in diagnosis. In CD56 images, the proportion of the number of pixel points of background, negative cells and positive cells is very unbalanced, which is roughly 70∶10∶1 and affects the segmentation effect of semantic segmentation technology on CD56 images. In this paper, the loss function of the semantic segmentation model is improved by adding loss weight to different class and adding adaptive weight to each pixel, so that the model can pay more attention to cells, especially positive cells. At the same time, the clustering method is used to refine the annotations of CD56 images before model training, which further improves the segmentation accuracy of the model. The experimental results on CD56 image dataset show that, the refinement of the image annotations and the improvement of the loss functions in the relevant semantic segmentation models can improve the segmentation accuracy of the CD56 images.

Key words: CD56 image, semantic segmentation, deep learning, medical image processing, clustering, adaptive weighted loss