计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (06): 1105-1113.
张开生,赵小芬
ZHANG Kai-sheng,ZHAO Xiao-fen
摘要: 在连续语音识别系统中,针对复杂环境(包括说话人及环境噪声的多变性)造成训练数据与测试数据不匹配导致语音识别率低下的问题,提出一种基于自适应深度神经网络的语音识别算法。结合改进正则化自适应准则及特征空间的自适应深度神经网络提高数据匹配度;采用融合说话人身份向量i-vector及噪声感知训练克服说话人及环境噪声变化导致的问题,并改进传统深度神经网络输出层的分类函数,以保证类内紧凑、类间分离的特性。通过在TIMIT英文语音数据集和微软中文语音数据集上叠加多种背景噪声进行测试,实验结果表明,相较于目前流行的GMM-HMM和传统DNN语音声学模型,所提算法的识别词错误率分别下降了5.151%和3.113%,在一定程度上提升了模型的泛化性能和鲁棒性。