• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (06): 1040-1053.

• 图形与图像 • 上一篇    下一篇

基于图神经网络的行人轨迹预测研究综述

曹健1,2,陈怡梅1,2,李海生1,2,蔡强1,2   

  1. (1.北京工商大学计算机学院,北京 100048;2.食品安全大数据技术北京市重点实验室,北京 100048)
  • 收稿日期:2021-10-14 修回日期:2022-05-10 接受日期:2023-06-25 出版日期:2023-06-25 发布日期:2023-06-16
  • 基金资助:
    国家自然科学基金(61877002);北京市教委-市自然基金委联合资助项目(KZ202110011017);北京市自然科学基金-丰台轨道交通前沿研究联合基金资助项目(L191009)

A survey of pedestrian trajectory prediction based on graph neural network

CAO Jian1,2,CHEN Yi-mei1,2,LI Hai-sheng1,2,CAI Qiang1,2   

  1. (1.School of Computer Science and Engineering,Beijing Technology and Business University,Beijing 100048;
    2.Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing 100048,China)
  • Received:2021-10-14 Revised:2022-05-10 Accepted:2023-06-25 Online:2023-06-25 Published:2023-06-16

摘要: 随着计算机视觉和自动驾驶技术的快速发展,自动感知、理解和预测人类行为的能力变得越来越重要。各类传感器的普及使得社会中产生了大量运动物体的位置数据。基于这些数据预测行人的运动轨迹在社交预测等多个领域都有着极大的价值。为了深入了解这方面的发展,对基于图神经网络的行人轨迹预测方法进行了综述,从多个角度比较、分析和总结了行人轨迹预测的图神经网络算法,讨论了不同算法在该领域的研究与发展;在目前的公共数据集上进行了对比和分析,介绍了相应性能指标,给出了不同算法的性能比较结果,提出了目前研究仍存在的问题,拓展研究思路和方法;展望了未来可能出现的研究方向。

关键词: 行人轨迹预测, 视觉预测, 图神经网络, 深度神经网络, 自动驾驶

Abstract: With the rapid development of the technology of computer vision and autonomous driving, the ability to sense, understand and predict human behavior is becoming more and more important. The popularity of various sensors has generated a large amount of position data of moving objects in society. Predicting the movement trajectory of pedestrians based on these data has great value in social prediction and other fields. To gain insight into the development in this area, a literature review is conducted on graph neural network-based pedestrian trajectory prediction methods. The graph neural network algorithms for pedestrian trajectory prediction are compared, analyzed and summarized from multiple perspectives, and the research and development of different algorithms in this field are discussed. The comparison and analysis are carried out on the current public data sets, an overview of the corresponding performance indicators is provided, and the performance comparison results of different algorithms are given. At the same time, this paper puts forward the research problems that still exist and looks forward to the possible research directions in the future.

Key words: pedestrian trajectory prediction, visual prediction, graph neural network, deep neural network, autonomous driving