• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (09): 1693-1701.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于上下文表示的知识追踪方法

王文涛1,马慧芳1,舒跃育2,贺相春3   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;
    2.西北师范大学心理学院,甘肃 兰州 730070;3.西北师范大学教育技术学院,甘肃 兰州 730070)
  • 收稿日期:2021-01-21 修回日期:2021-03-23 接受日期:2022-09-25 出版日期:2022-09-25 发布日期:2022-09-25
  • 基金资助:
    国家自然科学基金(61762078,62167007);西北师范大学青年教师能力提升计划(NWNU-LKQN2019-2);广西可信软件重点实验室研究课题(kx202003)

Knowledge tracing based on contextualized representation

WANG Wen-tao1,MA Hui-fang1,SHU Yue-yu2,HE Xiang-chun3   

  1. (1.College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070;
    2.College of Psychology,Northwest Normal University,Lanzhou 730070;
    3.College of Educational Technology,Northwest Normal University,Lanzhou 730070,China)
  • Received:2021-01-21 Revised:2021-03-23 Accepted:2022-09-25 Online:2022-09-25 Published:2022-09-25

摘要: 知识追踪是教育数据挖掘领域中一个十分重要的问题,旨在利用可观测到的学生历史交互数据和习题包含的知识点相关信息来推断学生对知识点的掌握情况。已有方法虽在不同程度上取得了一些进展,但大多忽略了使用知识点表示习题的重要性,并且对使用诸如学习因素之类的上下文表示知识点的研究也不够充分。针对上述问题,提出基于上下文表示的知识追踪方法KTCR。首先,综合考虑影响学生学习过程的因素,并基于学生响应数据设计了知识点上下文表示方法,从而基于Q矩阵表示知识点上下文;其次,为了实现习题向量的降维,利用融合上下文信息的知识点和学生响应数据对习题向量进行重表示;最后,结合学生历史交互数据,使用长短期记忆网络对学生的知识状态进行估计。在4个真实数据集上的实验表明了本文方法对于习题嵌入表示的合理性,并且能够有效地估计学生的知识状态。

关键词: 知识追踪, 教育数据挖掘, 上下文表示, Q矩阵, 长短期记忆网络

Abstract: Knowledge tracing (KT) is a very important problem in the field of educational data mining. It aims to use the observable historical interaction data of students and the knowledge concepts (KCs) in the exercises to infer the students’ knowledge states (KS). Although existing efforts have yielded immense success on this task, most of them ignore the importance of using knowledge points to represent exercises, and the research on using contexts such as learning factors to represent knowledge points is not enough. Aiming at the above issue, a Knowledge Tracking method based on Contextualized Representations (KTCR) is proposed. Specifically, firstly, considering the complex contexts of students' learning process, a contextualized representation method based on response logs for KCs is devised to generate contextualized Q-matrix. Moreover, contextualized KCs and response logs are leveraged to re-represent vectors of exercises. Finally, Long Short-Term Memory network (LSTM) is adopted to estimate KS vectors of all students with the help of historical interaction data. Experiments on four real-world datasets demonstrate the rationality of the proposed method for the embedded representation of exercises, and can effectively estimate the knowledge state of students.

Key words: knowledge tracing, educational data mining, contextualized representation, Q-matrix, long short-term memory network