• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (10): 1893-1900.

• 人工智能与数据挖掘 • 上一篇    

基于深度BiLSTM和图卷积网络的方面级情感分析

杨春霞1,2,3,宋金剑1,2,3,姚思诚1,2,3   

  1. (1.南京信息工程大学自动化学院,江苏 南京210044;2.江苏省大数据分析技术重点实验室,江苏 南京 210044;
    3.江苏省大气环境与装备技术协同创新中心,江苏 南京 210044)
  • 收稿日期:2021-03-19 修回日期:2021-05-28 接受日期:2022-10-25 出版日期:2022-10-25 发布日期:2022-10-28
  • 基金资助:
    国家自然科学基金(51705260,61273229)

Aspect-level sentiment analysis based on deep BiLSTM and graph convolutional networks

YANG Chun-xia1,2,3,SONG Jin-jian1,2,3,YAO Si-cheng1,2,3   

  1. (1.School of Automation,Nanjing University of Information Science & Technology,Nanjing 210044;
    2.Jiangsu Key Laboratory of Big Data Analysis Technology(B-DAT),Nanjing 210044;
    3.Jiangsu Collaborative Innovation Center of Atmospheric Environment and 
    Equipment Technology(CICAEET),Nanjing 210044,China)
  • Received:2021-03-19 Revised:2021-05-28 Accepted:2022-10-25 Online:2022-10-25 Published:2022-10-28

摘要: 现有方面级情感分析方法,存在无法获取最优文本表示和使用普通图卷积网络不能提取依存图中深层结构信息的问题。为此,提出了一种基于深度BiLSTM(DBiLSTM)和紧密连接的图卷积网络(DDGCN)模型。首先,通过DBiLSTM获取方面词与上下文单词间的深层语义信息;其次,在原始图卷积网络中加入紧密连接,以生成能提取深层结构信息的紧密图卷积网络;然后,利用改进后的图卷积网络捕获依存图上的结构信息;最终,将融合2种深层信息的文本表示用于情感分类。3个数据集上的实验结果表明,DDGCN模型相比对比模型在准确度和F1上均有提升。

关键词: 方面级情感分析, 图卷积网络, 深度BiLSTM, 紧密连接

Abstract: In the existing aspect-level sentiment analysis methods, there are problems that the optimal text representation cannot be obtained, and the general graph convolutional network cannot be used to extract the deep structural information in the dependency graph. For these problems, this paper proposes a graph convolutional network (DDGCN) model based on deep BiLSTM and dense connections. Firstly, the deep semantic information between aspect words and context words is obtained by deep BiLSTM. Secondly, dense connections are added to the original graph convolutional network to generate a dense graph convolutional network that can extract the deep structural information. Then, the improved graph convolutional network is used to capture the structural information on the dependency graph. Finally, the text representation combining the two deep information is used for sentiment classification. Experimental results on three datasets show that DDGCN model improves both accuracy and F1 compared with the comparative model.


Key words: aspect-level sentiment analysis, graph convolutional network, deep BiLSTM, dense connection