• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 2071-2079.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于词共现的方面级情感分析模型

杨春霞1,2,3,姚思诚1,2,3,宋金剑1,2,3    

  1. (1.南京信息工程大学自动化学院,江苏 南京 210044;2.江苏省大数据分析技术重点实验室,江苏 南京 210044;
    3.江苏省大气环境与装备技术协同创新中心,江苏 南京 210044)

  • 收稿日期:2021-02-06 修回日期:2021-05-31 接受日期:2022-11-25 出版日期:2022-11-25 发布日期:2022-11-25
  • 基金资助:
    国家自然科学基金(61273229)

An aspect-level sentiment analysis model based on word co-occurrence

YANG Chun-xia1,2,3,YAO Si-cheng1,2,3,SONG Jin-jian1,2,3   

  1. (1.School of Automation,Nanjing University of Information Science & Technology,Nanjing 210044;
    2.Jiangsu Key Laboratory of Big Data Analysis Technology( B-DAT),Nanjing 210044;
    3.Jiangsu Collaborative Innovation Center of Atmospheric Environment and 
    Equipment Technology(CICAEET),Nanjing 210044,China)
  • Received:2021-02-06 Revised:2021-05-31 Accepted:2022-11-25 Online:2022-11-25 Published:2022-11-25

摘要: 针对方面级情感分析存在的局部信息捕捉不充分、多个意见词混淆的问题,提出了一种基于词共现的方面级情感分析模型。该模型将方面级情感分析看成句子对任务,利用BERT获得包含上下文与方面词交互注意力的节点信息;同时,对每条数据样本构建独立的词共现图,使用门控图神经网络更新节点,加强方面词附近信息的融合,减少无关意见词的干扰;之后在自注意力层进一步融合全局信息,最终取出方面词节点送入非线性层获得分类结果。与6个基线模型的对比实验结果表明,该模型有效地提升了方面级情感分析的准确性。

关键词: 方面级情感分析, 门控图神经网络, 词共现图, 自注意力, BERT

Abstract: Aiming at the problems of insufficient local information capture and multiple opinion words confusion in aspect level sentiment analysis, this paper proposes an aspect level sentiment analysis model based on word co-occurrence. In this model, aspect level sentiment analysis is regarded as a sentence pair task, and the node information including context and aspect word interaction attention is obtained by BERT. At the same time, independent word co-occurrence graph is constructed for each data sample, and gating graph neural network is used to update nodes to enhance the fusion of information near aspect words and reduce the interference of irrelevant opinion words. Then, the global information is further fused in the self-attention layer. Finally, the aspect word nodes are sent to the nonlinear layer to obtain the classification results. Compared with six baseline models, the experimental results show that the model can effectively improve the accuracy of aspect level sentiment analysis. 

Key words: aspect-level sentiment analysis, gated graph neural network, word co-occurrence graph, self-attention, BERT