计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (02): 346-354.
唐宇1,代琪2,杨梦园1,陈丽芳1,3
TANG Yu1,DAI Qi2,YANG Meng-yuan1,CHEN Li-fang1,3
摘要: 支持向量机是检测异常点的常用方法,但其仍然存在难以高效获取最优参数,导致检测效率低、稳定性差的问题。鉴于此,提出一种改进的麻雀搜索算法ISSA,并将其用于优化支持向量机参数。首先,采用改进折射反向学习和可变对数螺线改进传统麻雀搜索算法;然后,利用改进麻雀搜索算法ISSA对支持向量机参数进行优化;最后,将优化后的支持向量机用于异常点检测。仿真实验结果表明,在G-mean和F-measure 2个评价指标上,利用ISSA优化后的支持向量机检测效果明显优于其它3种分类算法,具有更优秀的检测效率、稳定性和泛化能力。