• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于流形学习的光学遥感图像分类

王云艳1,2,罗冷坤1,王重阳1   

  1. (1.湖北工业大学电气与电子工程学院,湖北 武汉 430068;
    2.太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068)
  • 收稿日期:2018-09-12 修回日期:2018-11-07 出版日期:2019-07-25 发布日期:2019-07-25
  • 基金资助:

    国家自然科学基金(41601394);湖北工业大学博士启动基金(BSQD2016010)

Optical remote sensing image classification
based on manifold learning

WANG Yunyan1,2,LUO Lengkun1,WANG  Chongyang1   

  1. (1.School of Electrical and Electronic Engineering,Hubei University of Technology,Wuhan 430068;
    2.Key Laboratory of Solar Energy Efficient Utilization and
    Energy Storage Operation Control in Hubei Province,Wuhan 430068,China)
  • Received:2018-09-12 Revised:2018-11-07 Online:2019-07-25 Published:2019-07-25

摘要:

随着光学遥感图像技术的快速发展与广泛应用,对光学遥感图像的准确分类具有深远的研究意义。传统特征提取方式提取的高维特征中夹杂着许多冗余信息,分类过程可能导致过拟合现象,针对传统的线性降维算法不足以保持原始数据的内部结构,容易造成数据失真这一问题,提出基于流形学习的光学遥感图像分类算法。该算法首先提取出图像的SIFT特征,然后将流形学习运用于特征降维,最后结合支持向量机进行训练和识别。实验结果表明,在Satellite、NWPU和UCMerced实验数据中,冰川、建筑群和海滩分类精度得到了有效提高,达到85%左右;针对沙漠、岩石、水域等特殊环境遥感图像,分类精度提高了10%左右。总而言之,基于流形学习的分类算法对通过降维之后的数据能够保持在原高维空间中的拓扑结构,相似特征点能得到有效聚合,预防了“维数灾难”,减少了计算量,保证了分类精度。
 

关键词: 流形学习, 遥感图像, 图像分类, 支持向量机

Abstract:

With the rapid development and wide application of optical remote sensing image technology, accurate classification of optical remote sensing images has farreaching research significance. The high-dimensional features extracted by traditional feature extraction methods are mixed with much redundant information, and the classification process can lead to over-fitting. The traditional linear dimension reduction algorithm cannot maintain the internal structure of the original data, and is easy to cause data distortion. We propose an optical remote sensing image classification algorithm based on manifold learning. Firstly, the SIFT features of the image are extracted, and the manifold learning is applied to feature dimension reduction. Finally, the support vector machine is used for training and recognition. Experimental results show that the classification accuracy of glaciers, buildings and beaches is effectively improved on the experimental data of Satellite, NWPU and UC Merced, reaching about 85%. For remote sensing images of desert, rock and water, the classification accuracy is improved by about 10%. In summary, the data based on manifold learning can maintain the topological structure in the original high-dimensional space through the dimension reduction algorithm. Similar feature points can effectively aggregate, which prevents the "dimensional disaster", reduces the calculation amount and guarantees classification accuracy.
 

Key words: manifold learning, remote sensing image, image classification, support vector machine