• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (06): 1020-1029.

• 计算机网络与信息安全 • 上一篇    下一篇

针对图像识别的一种分步对抗防御方法研究

徐茹枝1,王硕1,龙燕2,宗启灼1   

  1. 随着深度学习技术的不断发展,其在图像识别领域的应用也取得了巨大突破,但对抗样本的存在严重威胁了模型自身的安全性。因此,研究有效的对抗防御方法,提高模型的鲁棒性,具有深刻的现实意义。为此,基于快速生成对抗样本和保持样本预测结果相似性之间的博弈,提出了一种分步防御方法。首先,对通用样本进行随机数据增强,以提高样本多样性;然后,生成差异性对抗样本和相似性对抗样本,增加对抗训练中对抗样本的种类,提高对抗样本的质量;最后,重新定义损失函数用于对抗训练。实验结果表明,在面对多种对抗样本的攻击时,分步防御方法表现出了更优的迁移性和鲁棒性。

  • 收稿日期:2022-07-20 修回日期:2022-09-09 接受日期:2023-06-25 出版日期:2023-06-25 发布日期:2023-06-16
  • 基金资助:
    国家自然科学基金(61972148)

Research on a step-by-step adversarial defense method for image recognition

XU Ru-zhi1,WANG Shuo1,LONG Yan2,ZONG Qi-zhuo1   

  1. (1.School of Control and Computer Engineering,North China Electric Power University,Beijing 102206;
    2.State Power Investment Corporation Digital Technology Co.,Ltd.,Beijing 102200,China)
  • Received:2022-07-20 Revised:2022-09-09 Accepted:2023-06-25 Online:2023-06-25 Published:2023-06-16

摘要: 图像增强; 对抗训练; 分步防御; 深度学习

Abstract: At present, with the continuous development of deep learning technology, its application in the field of image recognition has also made a great breakthrough. However, the existence of adversarial samples seriously threatens the security of the model itself. Therefore, it is of profound practical significance to study effective adversarial defense methods and improve the robustness of the model. Therefore, based on the game between quickly generating adversarial samples and maintaining the similarity of sample prediction results, a step-by-step adversarial defense method is proposed. The method first performs random data enhancement on the common samples to improve the sample diversity. Secondly, it generates the difference adversarial samples and the similarity adversarial samples, so as to improve the variety and quality of the adversarial samples in the adversarial training. Finally, the loss function is redefined for adversarial training. Finally, experimental verification shows that the algorithm has better mobility and robustness in the face of multiple attacks against the sample.

Key words: image enhancement, adversarial training, step-by-step defense, deep learning