• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (06): 1011-1019.

• 计算机网络与信息安全 • 上一篇    下一篇

基于Double-Bagging特征降维异质集成入侵检测

陈俊彦,卢贤涛,黄雪锋,卢小烨,廖岑卉珊   

  1. (桂林电子科技大学计算机与信息安全学院,广西 桂林 541004)
  • 收稿日期:2023-01-18 修回日期:2023-03-26 接受日期:2023-06-25 出版日期:2023-06-25 发布日期:2023-06-16
  • 基金资助:
    广西区自然科学基金(2020GXNSFDA238001);广西高校中青年教师科研基础能力提升项目(2020KY05033)

Double-Bagging based feature dimension reduction heterogenous integrated intrusion detection

CHEN Jun-yan,LU Xian-tao,HUANG Xue-feng,LU Xiao-ye,LIAO-CEN Hui-shan   

  1. (School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,China)
  • Received:2023-01-18 Revised:2023-03-26 Accepted:2023-06-25 Online:2023-06-25 Published:2023-06-16

摘要: 入侵检测是网络安全领域中具有挑战性的重要任务。单个分类器可能会带来分类偏差,使用集成学习相较单分类器,具有更强的泛化能力及更高的精确率,但调整各基分类器的权重需要大量的时间。基于此问题,提出了一种基于Bagging特征降维和基于Bagging异质集成入侵检测分类算法(Double- Bagging)的特征降维异质集成入侵检测算法。该算法通过集成5个特征选择算法,采用Bagging投票机制选出最优特征子集,实现高效准确的特征降维。同时,引入集成学习中的成对多样性度量,从不同基分类器组合中选出最优异质集成集合。对于赋权函数综合使用精确率和AOC值作为权重对分类器进行集成。实验结果表明,所提算法精确率高达99.94%,系统错误率及正判率分别为0.03%和99.55%,均优于现有主流入侵检测算法的。

关键词: 入侵检测, 异质集成学习, 特征降维, 成对多样性度量

Abstract: Intrusion detection is a challenging and important task in the field of network security. A single classifier may bring classification bias, and using ensemble learning has stronger generalization ability and higher accuracy compared to a single classifier. Although such algorithms have good classification performance, adjusting the weights between the base classifiers requires a lot of time. To address this issue, an feature dimension reduction heterogenous integration intrusion detection model based on Bagging-based feature dimension reduction and Bagging heterogeneous integration-based intrusion detection classification algorithm (Double-Bagging) is proposed. The algorithm integrates five feature selection algorithms and adopts a Bagging voting mechanism to select the optimal feature subset, in order to achieve efficient and accurate feature dimensionality reduction. At the same time, the pairwise diversity measure in ensemble learning is introduced to choose the optimal heterogeneous ensemble set for different base classifier combinations. For the weighting function, accuracy and AOC value are used as weights to integrate classifiers. The experiment shows that the models accuracy is up to 99.94%, and the system error rate and positive judgment rate are up to 0.03% and 99.55%, which is superior to the existing mainstream intrusion detection algorithms.

Key words: intrusion detection, heterogeneous integrated learning, feature dimension reduction, measure of paired diversity