• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (04): 615-625.

• 计算机网络与信息安全 • 上一篇    下一篇

线云隐私攻击算法的并行加速研究

郭宸良,阎少宏,宗晨琪   

  1. (华北理工大学理学院,河北 唐山 063210)
  • 收稿日期:2023-07-14 修回日期:2023-11-06 接受日期:2024-04-25 出版日期:2024-04-25 发布日期:2024-04-18
  • 基金资助:
    国家自然科学基金(U20A20179)

Research on parallel acceleration of line cloud privacy attack algorithm

GUO Chen-liang,YAN Shao-hong,ZONG Chen-qi   

  1. (College of Science,North China University of Science and Technology,Tangshan 063210,China)
  • Received:2023-07-14 Revised:2023-11-06 Accepted:2024-04-25 Online:2024-04-25 Published:2024-04-18

摘要: 线云定位方法能保护场景隐私,但也存在被隐私攻击算法破解的风险。该攻击算法能从线云恢复近似点云,但其计算效率较低。针对该问题,提出了一种并行优化算法,并对其运行时间和加速比进行了分析。具体来说,分别采用SPMD模式和流水线模式实现了CPU多核并行和GPGPU并行。然后,进一步结合数据并行模式实现了异构计算,以达到最高的并行度。实验结果表明,并行优化算法加速比最大为15.11,最小为8.20;相比原算法,并行优化算法的还原点云相对误差控制在原误差的0.4%以内,保证了算法的精度。该研究对线云隐私攻击算法以及其他密度估计问题、不同场景下的线云隐私保护算法等有重要意义和参考价值。

关键词: 线云隐私安全, 异构计算, 并行化处理, 隐私攻击算法;加速比

Abstract: The localization methods based on line cloud can protect scene privacy, but they also face the risk of being cracked by a privacy attack algorithm proposed by Kunal Chelani et al. This attack algorithm can recover approximate point clouds from line clouds, but its computational efficiency is low. To address this issue, a parallel optimization algorithm is proposed and evaluated in terms of running time and speedup ratio. Specifically, the CPU multi-core parallelism and the GPGPU parallelism are implemented using the SPMD pattern and the pipeline parallel pattern respectively. Furthermore, the data parallel pattern is adopted to implement heterogeneous computing, to achieve the highest degree of parallelism. Experimental results demonstrate that the maximum speedup ratio of the parallel optimization algorithm is 15.11, and the minimum is 8.20. Additionally, compared to the original algorithm, the parrellel optimization algorithm ensures the relative error of the recovered point clouds within 0.4% of the original error, ensuring the accuracy of the algorithm. This research holds significant importance and reference value for line cloud privacy attack algorithms, as well as for privacy protection algorithms in Line Cloud under different scenarios and other density estimation problems.

Key words: line cloud privacy security, heterogeneous computing, parallel processing, privacy attack algorithm, speedup ratio