• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (04): 716-724.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于多视角对比学习的隐式篇章关系识别

吴一珩1,李军辉1,朱慕华2    

  1. (1.苏州大学计算机科学与技术学院,江苏 苏州 215006;2.美团,北京 100000)
  • 收稿日期:2022-12-24 修回日期:2023-05-12 接受日期:2024-04-25 出版日期:2024-04-25 发布日期:2024-04-18
  • 基金资助:
    国家自然科学基金 (61876120)

Implicit discourse relation recognition with multi-view contrastive learning

WU Yi-heng1,LI Jun-hui1,ZHU Mu-hua2   

  1. (1.School of Computer Science & Technology,Soochow University,Suzhou 215006;
    2.Meituan,Beijing 100000,China)
  • Received:2022-12-24 Revised:2023-05-12 Accepted:2024-04-25 Online:2024-04-25 Published:2024-04-18

摘要: 隐式篇章关系识别IDRR的相关工作集中在篇章单元编码器的设计上。将对比学习引入到IDRR,以此获得区分度更高的篇章单元表征。具体地,首先使用一个轻量的IDRR模型;然后为了学习到更好的篇章单元表征,分别从样例层级、批层级和群层级,探索了3种不同视角的对比学习方法在IDRR中的应用;最后本文将多视角对比学习目标联合IDRR同时进行训练。本文提出的方法几乎不增加训练时间,而且只引入少量额外参数。基于PDTB 2.0的实验结果表明该方法达到了最优性能。

关键词: 隐式篇章关系识别, 多视角, 对比学习, 联合学习

Abstract: Previous researches on implicit discourse relationship recognition (IDRR) usually focus on designing effective discourse encoders. Different from theirs, this paper proposes a novel approach which introduces contrastive learning into IDRR so as to obtain representations of discourse units (DUs) with more differentiation. Specifically, a lightweight IDRR classification model is firstly adopted. Then, to better learn representations of DUs, the application of three different contrastive learning methods in IDDR are explored from multiple views, including instance-level, batch-level, and group-  level. Finally, three multi-view contrastive learning objectives are combined for better IDRR. Our proposed method only slightly increases training time and introduces small additional parameters. Experimental results on PDTB 2.0 show that our method achieves the state-of-the-art performance.


Key words: implicit discourse relation recognition, multi-view, contrastive learning, joint learning