• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (04): 707-715.

• 人工智能与数据挖掘 • 上一篇    下一篇

双视图对比学习引导的多行为推荐方法

李清风1,金柳2,马慧芳1,张若一1   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;2.中国交通信息科技集团有限公司,北京 100088)
  • 收稿日期:2022-09-27 修回日期:2023-03-23 接受日期:2024-04-25 出版日期:2024-04-25 发布日期:2024-04-18
  • 基金资助:
    国家自然科学基金(62167007,61762078,61363058);西北师范大学青年教师能力提升计划(NWNULKQN2019-2)

A dual-view contrastive learning-guided multi-behavior recommendation method

LI Qing-feng1,JIN Liu2,MA Hui-fang1,ZHANG Ruo-yi1   

  1. (1.College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;
    2.China Transport Information Center Co.,Ltd.,Beijing 100088,China)
  • Received:2022-09-27 Revised:2023-03-23 Accepted:2024-04-25 Online:2024-04-25 Published:2024-04-18

摘要: 多行为推荐(MBR)通常利用多种类型的用户交互行为(例如,浏览、添加购物车和购买)来学习用户对目标行为(即购买)的偏好。受到稀疏监督信号的影响,现有的MBR方法推荐性能欠佳。最近,对比学习从原始数据本身挖掘辅助监督信号取得成功,受此启发提出了一种双视图对比学习引导的方法来增强MBR。首先,利用多行为交互数据来构造2个能同时捕获局部和高阶结构的信息视图;然后,设计2个不同的视图编码器在上述互补视图上学习用户和项目的嵌入表示;最后,通过跨视图协同对比学习与相互监督从而学习到更好的嵌入表示。在2个真实数据集上的实验结果表明,本文方法明显优于基线方法。

关键词: 协同过滤, 对比学习, 图神经网络, 多行为推荐

Abstract: Multi-behavior recommendation (MBR) typically utilizes various types of user interaction behaviors (such as browsing, adding to cart, and purchasing) to learn user preferences for the target behavior (i.e., purchasing). Due to the impact of sparse supervision signals, existing MBR models often suffer from poor recommendation performance. Recently, contrastive learning has achieved success in mining auxiliary supervision signals from raw data itself. Inspired by this, we propose a dual-view con- trastive learning-guided method to enhance MBR. Firstly, we construct two views that can capture both local and high-order structural information using multi-behavior interaction data. Then, we design two different view encoders to learn user and item embeddings on these complementary views. Finally, we use cross-view collaborative contrastive learning to mutually supervise and learn better embeddings. Experimental results on two real-world datasets demonstrate that our proposed method significantly outperforms baseline methods.

Key words: collaborative filtering, contrastive learning, graph neural network, multi-behavior recommendation