• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (07): 1237-1244.

• 计算机网络与信息安全 • 上一篇    下一篇

基于异步分层联邦学习的数据异质性处理方法研究

郭昌昊,唐湘云,翁彧   

  1. (中央民族大学信息工程学院,北京 100081)
  • 收稿日期:2023-10-20 修回日期:2023-11-23 接受日期:2024-07-25 出版日期:2024-07-25 发布日期:2024-07-19
  • 基金资助:
    国家自然科学基金青年基金(62302539);中央民族大学国家安全研究院边疆少数民族地区国家安全研究项目(2023GJAQ08)

A data heterogeneity processing method based on asynchronous hierarchical federated learning

GUO Chang-hao,TANG Xiang-yun,WENG Yu   

  1. (School of Information Engineering,Minzu University of China,Beijing 100081,China)
  • Received:2023-10-20 Revised:2023-11-23 Accepted:2024-07-25 Online:2024-07-25 Published:2024-07-19

摘要: 在物联网设备遍布的时代,时刻都在产生大量数据,数据分布和数据量各不相同,因此数据异质性普遍存在。针对物联网环境中智能设备的联邦学习挑战,传统联邦学习的同步机制解决数据异质性(NON-IID)问题并不理想,且面临着单点故障和维护全局时钟的复杂性问题,而异步机制则可能带来额外的通信开销和NON-IID数据分布导致的过时性问题。分层联邦学习结合异步机制在应对数据异质性的问题时更加灵活,为此,提出了一种基于分层联邦学习的异步分层联邦学习方法。首先,使用BIRCH算法分析物联网中各节点的数据分布并进行簇的划分;然后,对簇中的数据进行拆分与验证,目的是找到数据质量高的节点,然后将数据质量高的簇中的节点打散,重组到其他数据质量低的簇中,形成新的簇;最后,进行簇内聚合和全局聚合的两阶段模型训练。此外,基于MNIST数据集,对提出的方法进行了评估。结果表明,与经典方法相比,所提方法在NON-IID数据集上收敛速度提高,而且在模型精度上提高了15%以上。

关键词: 物联网, 联邦学习, 异步联邦学习, 分层联邦学习, 数据异质性, 数据分布

Abstract: In the era of ubiquitous Internet of Things devices, a vast amount of data with varying distributions and volumes is continuously generated, leading to pervasive data heterogeneity. Addressing the challenges of federated learning for intelligent devices in the IoT landscape, traditional synchronous federated learning mechanisms fall short in effectively tackling the NON-IID data distribution problem. Moreover, they are plagued by issues such as single-point failures and the complexity of maintaining a global clock. However, asynchronous mechanisms may introduce additional communication overhead and obsolescence due to NON-IID data distribution. To offer a more flexible solution to these chal- lenges, an asynchronous hierarchical federated learning  method is proposed. Initially, the BIRCH algorithm is employed to analyze the data distribution across various IoT nodes, leading to the formation of clusters. Subsequently, data within these clusters is dissected and validated to identify nodes with high data quality. Nodes from high-quality clusters are then disaggregated and reorganized into lower-quality clusters, forming new, optimized clusters. Finally, a two-stage model training is conducted, involving both intra-cluster and global aggregation. Additionally, our proposed approach is evaluated using the MNIST dataset. The results show that, compared to the baseline set by the classical FedAVG method, the proposed approach achieves faster convergence on NON-IID datasets and improves model accuracy by more than 15%.

Key words: Internet of Things (IoT), federated learning, asynchronous federated learning, hierarchical federated learning, non-independent and identically distributed data, data distribution