摘要: 针对传统水下目标检测器受环境影响较大的问题,使用一种新的轻量级网络LUNet提取特征,结合两阶段检测算法提出轻量级检测器LUDet。首先,网络的第1个阶段使用高效卷积池化来获取不同特征表达。然后,在稠密连接结构的基础上增加两路稠密连接,以提高网络表征能力。网络由卷积池化层与两路稠密连接结构构成,网络中使用GhostModel代替1×1点卷积。使用CAFIR10和CAFIR100数据集进行分类实验验证了提出的骨干网的有效性。针对检测任务,LUDet通过通道注意力、多阶段融合后的特征图对目标进行检测。使用2个水下数据集对改进的检测器进行验证,水下生物数据集上检测的mAP达到了52.5%,水下垃圾数据集上检测的mAP达到了58.7%。