• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2108-2118.

• 高性能计算 • 上一篇    下一篇

基于静动态样本点重构的处理器功耗建模精度提升方法

钟佳卿,陈娟,周一畅,吴贤瑜,王蕊,喻湘   

  1. (国防科技大学计算机学院,湖南 长沙 410073)

  • 收稿日期:2024-11-30 修回日期:2024-12-29 出版日期:2025-12-25 发布日期:2026-01-06

A processor power modeling accuracy improvement method based on static and dynamic sample point reconstruction

ZHONG Jiaqing,CHEN Juan,ZHOU Yichang,WU Xianyu,WANG Rui,YU Xiang   

  1. (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2024-11-30 Revised:2024-12-29 Online:2025-12-25 Published:2026-01-06

摘要: 建立高精度细粒度CPU功耗模型对于计算机系统的功耗管理与优化至关重要。针对多核处理器建模中建模数据集数量、类型分布不均衡等问题,提出一种基于静动态程序样本点重构的处理器建模精度提升方法。程序样本由程序运行时的性能计数器(PMC)采集数据构成。静态重构算法从特征选择、时间粒度细化和空间去冗余3个维度对程序样本点进行重构。动态重构算法作为静态重构算法的补充,关注程序在不同编译选项或不同资源加载等优化手段下运行时的行为,选择合适优化手段的程序样本,补充程序样本点。为评估静动态样本点重构算法对功耗建模的影响,在x86和ARM处理器平台上对5个程序基准测试集进行评估。实验结果表明,在2个x86平台上,功耗模型分别采用线性模型、神经网络模型和随机森林模型,精度提升的平均结果分别为74.80%,65.70%,32.24%以及61.61%,80.44%,18.76%,在ARM平台上,线性模型、神经网络模型和随机森林模型的精度提升平均结果为22.34%,34.63%和34.36%。

关键词: 样本点重构, 静动态结合, CPU功耗建模, 训练集优化, 高精度

Abstract: Establishing a high-precision, fine-grained CPU power consumption model is crucial for power management and optimization in computer systems. Addressing challenges such as the imbalance in the quantity and type distribution of modeling datasets in multi-core processor modeling, this paper proposes a method to enhance processor modeling accuracy based on the reconstruction of static and dynamic program sample points. Program samples are composed of data collected by performance monitor- ing counters (PMCs) during program execution. The static reconstruction algorithm reconstructs program sample points from three dimensions: Feature selection, time granularity refinement, and spatial redundancy reduction. As a complement to the static reconstruction algorithm, the dynamic reconstruction algorithm focuses on the behavior of programs running under various optimization techniques, such as different compilation options or varying resource loads. It selects program samples optimized with appropriate techniques to supplement the program sample points. To evaluate the impact of the static and dynamic sample point reconstruction algorithms on power modeling, this paper assesses five program benchmark suites on x86 and ARM processor platforms. The experimental results show that on two x86 platforms, when the power consumption models employ linear model, neural network model, and random forest model respectively, the average accuracy improvements are 74.80%, 65.70%, and 32.24%, as well as 61.61%, 80.44%, and 18.76%. On the ARM platform, the average accuracy improvements for linear model, neural network model, and random forest model are 22.34%, 34.63%, and 34.36%, respectively. 

Key words: sample point reconstruction, static-dynamic integration, CPU power modeling, training set optimization, high precision