• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2099-2107.

• 高性能计算 • 上一篇    下一篇

基于多元混合编码的SRAM数字存算一体宏设计

郭瑞琦,杨卓航,陈销丰,王磊,王扬,胡杨,尹首一   

  1. (清华大学集成电路学院,北京 100084)

  • 收稿日期:2024-11-14 修回日期:2024-12-08 出版日期:2025-12-25 发布日期:2026-01-06
  • 基金资助:
    国家重点研发计划(2023YFB4403100,2021ZD0114400);国家自然科学基金 (62125403,92164301);新一代人工智能国家科技重大专项(2022ZD0115201);北京市科技计划 (Z221100007722023); 北方集成电路技术创新中心(北京)有限公司横向项目(QYJS-2023-2801-B)

A multi-hybrid encoding digital compute-in-memory macro design

GUO Ruiqi,YANG Zhuohang,CHEN Xiaofeng,WANG Lei,WANG Yang,HU Yang,YIN Shouyi   

  1. (School of Integrated Circuits,Tsinghua University,Beijing 100084,China)
  • Received:2024-11-14 Revised:2024-12-08 Online:2025-12-25 Published:2026-01-06

摘要: 存算一体芯片技术被认为是有望解决处理器芯片“存储墙”瓶颈,大幅提升人工智能算力能效和算力密度的关键技术和重要解决方案。提出了一款新型的数字式SRAM存算一体宏单元架构,利用权重数据、激励数据混合编码的方式优化功耗开销,提升芯片能效;并针对核心加法树电路进行了一系列电路层级的优化,提升芯片的面积效率。在TSMC 28 nm工艺库下,对所提出的数字式SRAM存算单元进行了仿真验证,测试模型为ResNet20。结果显示,在0.9 V,250 MHz下,混合编码优化可以提升2.17倍的能效;通过加法树优化可以将存算一体单元的面积减少14.2%;处理ResNet20模型时,256×64的存算阵列可以实现20.83 TOPS/W能效。

关键词: 人工智能, SRAM, 数字存算一体, 混合编码, 加法树优化 ,

Abstract: Compute-in-memory (CIM) is considered a promising solution to overcome the “memory wall” bottleneck, enhancing energy efficiency and area efficiency significantly. This paper proposes a novel digital SRAM-based compute-in-memory macro architecture. It optimizes power consumption and enhances chip energy efficiency by means of hybrid encoding of weight data and activation data. Additionally, a series of circuit-level optimizations are performed on the core adder tree circuit to improve the chip’s area efficiency. Under TSMC’s 28 nm process library, the proposed DCIM macro with hybrid encoding optimization improves energy efficiency by 2.17 times  at 0.9 V, 250 MHz, using the ResNet20 test model. The adder tree optimization reduces 14.2% area in the overall DCIM macro. Finally, a 256×64 DCIM achieves an energy efficiency of 20.83 TOPS/W when processing the ResNet20 model. 


Key words: artificial intelligence, SRAM, digital compute-in-memory, hybrid encoding, adder tree