• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (3): 548-560.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于驾驶上下文感知的驾驶员识别模型

杨林1,2,张磊1,2,刘佰龙1,2,梁志贞1,2,张雪飞3   

  1. (1.中国矿业大学矿山数字化教育部工程研究中心,江苏 徐州 221116;
    2.中国矿业大学计算机科学与技术学院,江苏 徐州 221116;3.江苏恒旺数字科技有限责任公司,江苏 苏州 215000)

  • 收稿日期:2023-08-05 修回日期:2024-04-23 出版日期:2025-03-25 发布日期:2025-04-02
  • 基金资助:
    中国矿业大学建设双一级专项资金(2018ZZCX14)

Driver identification model based on  driving context-aware

YANG Lin1,2,ZHANG Lei1,2,LIU Bailong1,2,LIANG Zhizhen1,2,ZHANG Xuefei3   

  1.  (1.Engineering Research Center for Mine Digitalization of Ministry of Education,
    Chian University of Mining and Technology,Xuzhou 221116;
    2.School of Computer Science & Technology,China University of Mining and Technology,Xuzhou 221116;
    3.Jiangsu Hengwang Digital Technology Co.,Ltd. Suzhou 215000,China)
  • Received:2023-08-05 Revised:2024-04-23 Online:2025-03-25 Published:2025-04-02

摘要: 随着隐私保护意识的提升,利用车辆轨迹识别汽车驾驶员已成为车辆数据分析热点。然而,现有模型难以准确捕捉驾驶风格与驾驶上下文之间的关系,导致识别准确率不高。因此,提出基于驾驶上下文感知的驾驶员识别模型CDIM。CDIM利用轨迹数据计算车辆运动特征,同时通过路网匹配获取出行路线,并设计基于双向Transformer的路段信息嵌入模块,为出行路线中每一段路段生成融合邻接路段特征的嵌入。然后,通过卷积跨模态注意力融合模块结合路段特征与运动特征,实现二者的高效融合。此外,结合外部因素特征,全面捕捉驾驶上下文对驾驶风格的影响。在公开数据集上的实验结果表明,CDIM的识别准确率为68.54%,相较于RM-Driver与Doufu分别提高了8.14%和4.81%,具有更高的驾驶员识别准确率。

关键词: 驾驶员识别, 表示学习, 上下文感知, 特征融合

Abstract: With the increasing awareness of privacy protection, identifying car drivers using vehicle trajectory data has become a hot topic in vehicle data analysis. However, existing models  struggle to accurately capture the relationship between driving style and driving context, resulting in low identification accuracy. Therefore, a driving context-aware driver identification model (CDIM) is proposed. CDIM utilizes trajectory data to calculate vehicle motion features and obtains travel routes through road network matching. It also designs a road segment information embedding module based on a bidirectional Transformer, which generates embeddings for each road segment in the travel route by fusing features of adjacent road segments. Then, a convolutional cross-modal attention fusion module is used to combine road segment features with motion features, achieving efficient fusion of the two. Additionally, external factor features are incorporated to comprehensively capture the influence of driving context on driving style. Experimental results on public datasets show that CDIM achieves a identification accuracy of 68.54%, which is an improvement of 8.14% and 4.81% compared to RM-Driver and Doufu, respectively, demonstrating higher driver identification accuracy.

Key words: driver identification, representation learning, context-aware, feature fusion