• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1470-1482.

• 人工智能与数据挖掘 • 上一篇    下一篇

文本问答中基于双向叠加注意力的证据区间预测

吐尔地·托合提1,2,罗长虹1,2,艾斯卡尔·艾木都拉1,2   

  1. (1.新疆大学计算机科学与技术学院(网络空间安全学院),新疆 乌鲁木齐 830017;
    2.新疆多语种信息技术重点实验室,新疆 乌鲁木齐 830017)
  • 收稿日期:2024-04-26 修回日期:2024-06-14 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    国家自然科学基金(62166042,U2003207);国防科技基金加强计划(2021-JCJQ-JJ-0059);新疆维吾尔自治区自然科学基金(2021D01C076)

Evidence span prediction based on bidirectional superposition attention in DBQA

TURDI Tohti1,2,LUO Changhong1,2,ASKAR Hamdulla1,2   

  1. (1.School of Computer Science and Technology(School of Cyberspace Security),Xinjiang University,Urumqi 830017;
    2.Xinjiang Key Laboratory of Multilingual Information Technology,Urumqi 830017,China) 
  • Received:2024-04-26 Revised:2024-06-14 Online:2025-08-25 Published:2025-08-27

摘要: 文本问答通常仅依靠文本与问题的单向匹配关系来定位证据区间并作答,在面临远端干扰及多处答案词等语义困难时难以捕捉精短证据区间。针对此问题,提出一种基于双向叠加注意力机制的证据区间预测模型ESP-BSA。首先,将问题与文本进行交叉匹配来丰富隐式交互的文本语义;其次,根据证据分布互异性设计软证据标签对来表示前向和后向证据得分;最后,对序列中每个位置的证据得分双向叠加以获得更符合上下文语境要求的证据区间。实验结果表明,所提方法在Span-F1,Span-EM等评价指标上较基线模型有所提升,证实了其在复杂语境中能够有效提高证据区间预测精确度和问答准确性。

关键词: 文本问答, 证据区间, 注意力机制, 双向叠加;软证据标签

Abstract: Document-based question answering (DBQA) generally relies solely on the one-way matching relationship between documents and questions to locate evidence spans and generate answers.However,capturing concise evidence spans is difficult when facing semantic challenges such as distant interference and multiple answer words.To address this issue,an evidence span prediction model ESP-BSA based on a bidirectional superposition attention mechanism is proposed.Firstly,the implicit interaction of text semantics is enriched by cross-matching the question with the text.Secondly,soft evidence label pairs are designed based on the heterogeneity of evidence distribution to represent the forward and backward evidence scores.Finally,the evidence scores at each position in the bidirectional stacked sequence are superposed to obtain evidence spans that better meet the contextual requirements.Experimental results demonstrate that the proposed model improves the precision of evidence span prediction and the accuracy of question answering in complex contexts,as evidenced by respective improvements in Span-F1 and Span-EM evaluation metrics compared to baseline models.


Key words: document-based question answering (DBQA), evidence span, attention mechanism, bidirectional superposition, soft evidence label