• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1619-1627.

• 图形与图像 • 上一篇    下一篇

LwFEN:一种无监督行人再识别的轻量特征提取网络

高顺强1,王智文1,白云2   

  1. (1.广西科技大学自动化学院,广西 柳州 545616;
    2.柳州工学院信息科学与工程学院,广西 柳州 545616)
  • 收稿日期:2024-01-15 修回日期:2024-05-08 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    国家自然科学基金(61962007,62266009);广西自然科学基金(2018GXNSFDA294001);广西财经大数据重点实验室开放基金(FEDOP2022A06);广西高校中青年教师科研基础能力提升项目(2022KY1697);广西高校中青年教师科研基础能力提升项目教育信息化专项(2022XXH0019);2023年广西科技大学研究生教育创新计划(GKYC202323)

LwFEN:A lightweight feature extraction network for unsupervised pedestrian  re-identification

GAO Shunqiang1,WANG Zhiwen1,BAI Yun2   

  1. (1.School of Automation,Guangxi University of Science and Technology,Liuzhou 545616;
    2.School of Information Science and Engineering,Liuzhou Institute of Technology,Liuzhou 545616,China)

  • Received:2024-01-15 Revised:2024-05-08 Online:2025-09-25 Published:2025-09-22

摘要: 针对无监督行人再识别模型计算成本高、模型参数量大的问题,提出一种无监督行人再识别的轻量化特征提取网络。首先,重新设计Ghost Bottleneck,实现模型参数量的压缩,并将ECA注意力模块嵌入到轻量级骨干网络中以提高性能,加强网络的特征提取能力,解决因轻量化而导致的特征丢失问题。其次,引入了集群级动态内存字典和动量更新策略,解决无监督聚类特征的嵌入,有助于缓解特征不一致问题。最后,在数据集LUPerson上进行预训练。在常用的Market-1501,MSMT17和PersonX等公共数据集上开展了大量实验验证。与PPLR,Cluster Contrast和RTMem等方法训练的模型的比较结果表明,LwFEN使模型的参数量下降了24.3%,计算量(以FLOPs衡量)下降了28.12%,并将模型的mAP提升至83.4%。
轻量级网络;无监督行人再识别;动态内存字典;动量更新

关键词: 轻量级网络, 无监督行人再识别, 动态内存字典, 动量更新

Abstract: To address the problems of high computational cost and large model parameters in unsupervised person re-identification models,a lightweight feature extraction network for unsupervised person re-identification is proposed.First,the Ghost Bottleneck is redesigned to compress the number of models parameters,and the ECA attention module is embedded into the lightweight backbone network to improve performance,enhance the network’s feature extraction capability,and solve the problem of feature loss caused by lightweight design.Second,a cluster-level dynamic memory dictionary and momentum update strategy are introduced to handle the embedding of unsupervised clustering features,which helps to alleviate the problem of feature inconsistency.Finally,pre-training is performed on the LUPerson dataset.A large number of experiments are carried out on common public datasets such as Market-1501,MSMT17,and PersonX.Compared with models such as PPLR,Cluster Contrast,and RTMem,the results show that LwFEN reduces the model parameters  by 24.3%,the computational amount(measured by floating point operations) by 28.12%,and improves the mAP of the model to 83.4%.

Key words: lightweight network, unsupervised pedestrian re-identification, dynamic memory dictionary, momentum update ,